1 / 23

Measuring the Pulse Response of Magnetic Devices

Measuring the Pulse Response of Magnetic Devices. ---transients of transmission line circuits. 2008 奈米暨前瞻光電研討會 自旋電子專題 2008/5/24 彰化師大. Yuen-Wuu Suen ( 孫允武 ) Department of Physics, NCHU. Outline Transmission line basics Step response --- time-domain reflectometry (TDR) measurement

mei
Download Presentation

Measuring the Pulse Response of Magnetic Devices

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Measuring the Pulse Response of Magnetic Devices ---transients of transmission line circuits 2008奈米暨前瞻光電研討會 自旋電子專題 2008/5/24 彰化師大 Yuen-Wuu Suen (孫允武) Department of Physics, NCHU

  2. Outline Transmission line basics Step response --- time-domain reflectometry (TDR) measurement Pulse response Time-domain transmission (TDT) measurement Examples

  3. Transmission line basics u=c/n x Signal I+ I- V+ V- Ground Characteristic impedance Usually, Z0=50W.

  4. Transmission line basics I+ I- Z0 V+ V- ZL Voltage reflection coefficient Current reflection coefficient

  5. Step response --- time-domain reflectometry (TDR) measurement Terminated with Z0 Z0 T=l/u V0 Z0 Z0 x 0 l/2 l V(0) V(l/2) V(l) t t t 0 0 0 T/2 T I(0) I(l/2) I(l) t t t 0 0 0 T/2 T

  6. Z0 T=l/u Z0 Z0 x 0 l/2 l V(x) t=0+ I(x) l V(x) t=T- I(x) V(x) t=2T I(x)

  7. Step response --- time-domain reflectometry (TDR) measurement Open circuit Z0 T=l/u V0 Z0 x 0 l/2 l V(0) TDR V(l/2) V(l) t t t 0 0 0 T/2 T 2T 3T/2 I(0) I(l/2) I(l) t t t 0 0 0 T/2 T 2T

  8. Z0 T=l/u Z0 x 0 l/2 l V(x) t=0+ I(x) l V(x) t=T- I(x) V-(x) V(x) t=T+ I(x) V(x) t=3T/2 I-(x) I(x)

  9. Step response --- time-domain reflectometry (TDR) measurement Short circuit Z0 T=l/u V0 Z0 x 0 l/2 l V(0) TDR V(l/2) V(l) t t t 0 0 0 T/2 T 2T 3T/2 I(0) I(l) I(l/2) t t t 0 0 0 T/2 T 2T

  10. Step response --- time-domain reflectometry (TDR) measurement Capacitive load Z0 T=l/u V0 Z0 x 0 l/2 l V(0) TDR V(l/2) V(l) t t t 0 0 0 T/2 T 2T 3T/2 I(0) I(l/2) I(l) t t t 0 0 0 T/2 T 2T

  11. Step response --- time-domain reflectometry (TDR) measurement Inductive load Z0 T=l/u V0 Z0 x 0 l/2 l V(0) TDR V(l/2) V(l) t t t 0 0 0 T/2 T 2T 3T/2 I(0) I(l) I(l/2) t t t 0 0 0 T/2 T 2T

  12. Step response --- time-domain reflectometry (TDR) measurement Resistive load Z0 V0 Z0 RL x 0 l/2 l V(0) TDR V(l/2) V(l) t t t 0 0 0 T/2 T 2T 3T/2 I(0) I(l) I(l/2) t t t 0 0 0 T/2 T 2T

  13. Capacitance and Inductance Capacitance: any contact pad with changeable electric potential relative to ground. d For SiO2, if d=100 nm, Cox=0.345 fF/um2.For a 100x100um2 pad, C=3.45 pF.At 10 GHz, Xc=1/2pfC=4.6W. Inductance: any wire that changeable current being passed through. nH L and r in cm, and L>>r. nH For L=0.5cm, r=0.025mm, Lac=5nH.At 10 GHz, XL=2pfL=314W. I

  14. Pulse response +V0 V0 tp tp -V0 Using linear superposition

  15. Pulse response Short circuit Z0 T=l/u V0 Z0 x 0 l/2 l V(0) TDR V(l/2) V(l) t t t 0 0 0 T/2 T 2T 3T/2 I(0) I(l) I(l/2) t t t 0 0 0 T/2 T 2T

  16. Pulse response Short circuit Z0 T=l/u V0 Z0 x 0 l/2 l V(0) TDR V(l/2) V(l) t t t 0 0 0 T/2 T 2T 3T/2 I(0) I(l) I(l/2) t t t 0 0 0 T/2 T 2T

  17. Time-domain transmission (TDT) measurement RL// Z0 Z0 V0 IL Z0 Z0 T=l/u RL x TDT 0 2l l V(0) V(l) V(2l) TDR t t t 0 0 0 T 2T I(0) I(2l) I+(l) IL(l) t t t 0 0 0 T 2T

  18. Time-domain transmission (TDT) measurement with DC biasing circuit IDC VDC Z0 V0 IL Z0 Z0 RL suitable for 4-wire sample

  19. Single-Shot Time-Resolved Measurements of Nanosecond-Scale Spin-Transfer Induced Switching: Stochastic Versus Deterministic AspectsT. Devolder et al, Phys. Rev. Lett. 100, 057206 (2008)

  20. Equivalent circuit RL+Z0 Z0 V+(2) RL Z0 Z0 T=l/u x TDT 0 2l V(2l) V+(2) t 0 2T I(2l) t 0 2T

  21. Time-Domain Measurements of Nanomagnet Dynamics Driven by Spin-Transfer Torques I. N. Krivorotov et al, Science 14 January 2005 307: 228-231

  22. Microwave-assisted magnetization switching of Ni80Fe20 in magnetic tunneljunctions T. Moriyama et al, APPLIED PHYSICS LETTERS 90, 152503 (2007)

  23. Spin-torque diode effect in magnetic tunnel junctionsA. A. Tulapurkar et al, Nature, Vol 438|17 November 2005|doi:10.1038/nature04207

More Related