1 / 23

Last Lecture

Last Lecture. Dichotic Listening The corpus callosum & resource allocation Handedness Broca’s Aphasia. This Lecture. Wernicke’s aphasia The Wernicke-Geschwind Model Category-specific semantic deficits and the representation of meaning Introduction to the Frontal Lobes.

nikitaf
Download Presentation

Last Lecture

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Last Lecture • Dichotic Listening • The corpus callosum & resource allocation • Handedness • Broca’s Aphasia

  2. This Lecture • Wernicke’s aphasia • The Wernicke-Geschwind Model • Category-specific semantic deficits and the representation of meaning • Introduction to the Frontal Lobes

  3. Remember the Wernicke-Geschwind model? • Broca’s area: forms detailed coordinated plans for language production (speech, writing, covert/rehearsal) • Explains dysfluency and poor articulation in Broca's aphasics. Butcomprehension is not perfect... • Poor syntax comprehension • Broca's aphasics poor at judging grammaticality Active: The horse kicked the cow. Passive: The cow was kicked by the horse.

  4. Agrammatism • Disproportional difficulty reading and producing function words. • Difficulty using & understanding grammar Modification to Wernicke-Geschwind model Broca's area: • Plan for coordinating language production • Understanding and using syntax.

  5. Wernicke's aphasia Examiner: Can you tell me a little bit about why you’re here? Patient: Sine just don’t know why, what is really wrong, I don’t know, cause I can eaten treffren eatly an everythin like that I’m all right at home. (Excerpt from Kertesz, 1980; quoted by Carlson, 1994)

  6. Symptoms of Wernicke's aphasia • Speech: phonetically & grammatically normal but meaningless. • generally fluent, unlabored, well articulated. • normal intonation (prosody). • words used inappropriately • nonsense words (neologisms) --> "word salad" • meaning expressed in roundabout way (circumlocution). • Comprehension: severely impaired.

  7. According to Wernicke-Geschwind model Wernicke's Area ... • DOES NOT STORE MEANING! • stores memories of sound sequences that constitute words. • translates auditory input into phonological forms that can then access semantics.

  8. Interpretation of Wernicke's area in action Understanding spoken language: • Primary auditory cortex (41/42) -> Wernicke's A. (22) -> semantic networks distributed throughout the brain. Spontaneous speech: "cognitive" areas send input to Wernicke's area: • Cognition -> Wernicke's A. (22) -> arcuate fasciculus -> Broca's A. (44)-> Primary motor cortex

  9. PET activation during listening

  10. According to the Wernicke-Geschwind model... Wernicke’s A. essential for reading... Visual processing --> Angular g. --> Wernicke's a.--> Semantics • Angular gyrus (39) translates visual code to a form accessible by Wernicke’s a. • grapheme --> phoneme translation • Wernicke’s a. translates to a form that can access meaning. • Implication: Reading requires phonological recoding via Wernicke’s A.

  11. Where is meaning stored? • Wernicke’s area does not store meaning, so where is it stored? • Meaning is represented across a network of brain areas • Different brain areas contribute to different kinds of knowledge

  12. How do we know this? Loss of SEMANTIC KNOWLEDGE: • can’t recognize, describe from memory, or answer questions about objects. Category -specific deficits: • Some patients cannot recognize living things (plants/animals) but can recognize man-made things (tools/instruments) • Opposite pattern also reported (non-living things-impairment) Double dissociation: separable representations for difference categories of knowledge.

  13. PET evidence: Category-specific activations (Martin et al., 1996) • Subjects identified pictures of animals and tools • Certain visual areas more active for animals • Left premotor area more active for tools. Semantic representation: - tools represented by function. - living things represented by visual/sensory features.

  14. The Role of Language • Language ability sets us apart from other animals. • Is language what makes us uniquely human?

  15. Phineas Gage • Railroad worker who experienced head trauma. • He survived. • Drastically changed his personality. • “Gage was no longer Gage,” according to his friends.

  16. The Frontal Lobes Claim: The frontal lobes mediate those abilities that make us uniquely human. • Herein lies the riddle... What makes us uniquely human?

  17. The Frontal Lobes • 3 natural boundaries • posterior: central sulcus • inferior: Sylvian fissure (lateral fissure) • medial/inferior: corpus callosum

  18. Major Subdivisions Precentral (motor cortex): Area 4 Premotor: • Areas 6 and 8 (including supplementary motor) • 44 (Broca’s area) Prefrontal: • dorsolateral: Areas 46, 45, 9, 10 • ventrolateral: Areas 11, 47 • orbital: 11 Anterior Cingulate: • medial: Areas 24, 25, 32

More Related