1 / 31

Járművillamosság-elektronika

Járművillamosság-elektronika. Alapfogalmak Villamos és mágneses Átmeneti jelenségek Félvezetők Fajtáik 2010.09.08. Tematika. Tematika. Labor időpontok. Definíciók. Villamos áram: töltések rendezett irányú áramlása Iránya: pozitívból negatívba mutat (technikai áramirány)

nolen
Download Presentation

Járművillamosság-elektronika

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Járművillamosság-elektronika Alapfogalmak Villamos és mágneses Átmeneti jelenségek Félvezetők Fajtáik 2010.09.08.

  2. Tematika

  3. Tematika

  4. Labor időpontok

  5. Definíciók • Villamos áram: töltések rendezett irányú áramlása Iránya: pozitívból negatívba mutat (technikai áramirány) negatívból pozitívba (elektronok valós irányú mozgása - fizikai áramirány) Okozhatja: dörzs elektromosság, hő energia, galván- és indukciós elektromosság Járművillamosságtan-elektronika I.

  6. Villamos áram hatásai: • Hőhatás (ablakfűtés) • Elektromágneses (vezető körül mágn. tér) • Vegyi (galván elemek) • Ívhatás (gyújtógyertya) • Élettani (áramütés!!!!!) • Fény (izzólámpák) Járművillamosságtan-elektronika I.

  7. Áramerősség • Áramerősség: I (A) I=Q/t (vezető keresztmetszetén egységnyi idő alatt átáramló töltésmennyiség) 1 A az áram erőssége, ha két párhuzamos, egyenes, végtelen hosszúságú, elhanyagolhatóan kicsiny kör keresztmetszetű és vákuumban, egymástól 1 m távolságban lévő vezető között méterenként 2x10− 7N erőt hoz létre. Járművillamosságtan-elektronika I.

  8. Feszültség • Feszültség:U (V)U=W/Q • az elektromos töltésnek az A pontból a B pontba történő mozgatása során végzett munka (W) és az elektromosan töltött test töltésének (Q) a hányadosával definiált fizikai mennyiség. Egysége: J/C Elektromos potenciál: U(P) nevezzük A tér bármely pontjának (P), egy kitüntetett ponthoz (O) viszonyított feszültségét Járművillamosságtan-elektronika I.

  9. Ellenállás • Ellenállás: R (Ohm) R=U/I • Ohm-törvény: a vezetőn átfolyó áram erőssége egyenesen arányos a vezető két vége közti feszültséggel • Fajlagos ellenállás: R=l/A • Vezetőképesség: G (Siemens)=1/R Járművillamosságtan-elektronika I.

  10. Villamos munka: W=QU=ItU (J) • Villamos teljesítmény: P (Watt)=W/t=UI Kapacitás: C(F) C=Q/U (töltés befogadó képesség) a kondenzátorra vitt töltés (Q) és a kondenzátor fegyverzetei közötti feszültség (U) hányadosa. Egysége: C/V, röviden Farad. Járművillamosságtan-elektronika I.

  11. Mágneses indukció: B (T) B=M/NIA • Mágneses fluxus: (weber)=BA • adott felületen áthaladó • indukcióvonalak száma • Mágneses térerő: H (A/m) • Magnetometer Járművillamosságtan-elektronika I.

  12. B=μH=μoμrH, μo=4π10-7 Tm/A • μ:permeabilitás • μr<<1 diamágneses anyag (fa, ezüst) • μr>1 paramágneses anyag (Al, Pt, Mg, Ti, Cr, Mn, Mo, W ) • μr>>1 ferromágneses anyag (vas, nikkel, kobalt ) Járművillamosságtan-elektronika I.

  13. Mágneses Ohm törvény • Φ=BA=μHA=μNiA/l=μAθ/l, θ • Φ=θ/RM • Θ: mágneses gerjesztés=Ni • RM: mágneses ellenállás=l/μA Járművillamosságtan-elektronika I.

  14. Egyenes tekercsre • Egyenes tekercs (szolenoid) mágneses tere: az indukcióvonalak a tekercs belsejében párhuzamos egyenesek - azaz itt homogén a mező. • B=μiN/l Járművillamosságtan-elektronika I.

  15. A hiszterézisgörbe által bezárt terület arányos a vasanyag átmágnesezéséhez szükséges energiával. A váltakozó irányú gerjesztéssel elvesző energia, a hiszterézisveszteség, hővé alakul át. Járművillamosságtan-elektronika I.

  16. Áramjárta vezetőre ható erő: ha áram folyik egy mágneses mezőbe helyezett vezetőben, és az nem párhuzamos az indukcióvonalakkal, akkor a mágneses mező erőt fejt ki a vezetőre • F=liB, másképpen F=QvB • Jobbkéz szabály (i: hüvelyk- • ujj, B: mutatóujj, F: középsőujj) Járművillamosságtan-elektronika I.

  17. Időben változó mágneses mező • Mozgási indukció: ha egy vezető az indukcióvonalakat metszve mozog mágneses mezőben, akkor a végei közt feszültség (ha pedig a vezető egy zárt kör, akkor egyúttal elektromos áram) jön létre. Ezt a feszültséget illetve áramot indukált feszültségnek és áramnak nevezzük. • Faraday törvény: Járművillamosságtan-elektronika I.

  18. Lenz-szabály: az indukált áram iránya mindig olyan, hogy annak mágneses mezeje akadályozza az indukáló folyamatot • Önindukciós együttható: induktivitás (tekercsre) Járművillamosságtan-elektronika I.

  19. Hall effektus • UH=RHBI/h Gyújtásvezérlés Indukció, áram és teljesítmény mérés, érintés-mentes Járművillamosságtan-elektronika I.

  20. Tranziens jelenségek • Be és kikapcsoláskor • T=L/R és WL=Li2/2 • Imax=U/R Járművillamosságtan-elektronika I.

  21. Tekercset kondenzátorral helyettesítve • WC=CU2/2 • Üres kondi rövidzárnak tekinthető • Áramot korlátozni kell • T=RC • Ki és bekapcsolásnál • Nagy ugrások lehetnek Járművillamosságtan-elektronika I.

  22. Félvezetők • 4 vegyértékű elemek (Si, Ge) • Szén is az, egykristálya a gyémánt • Dotálással „szennyezzük” • Öt vegyértékűvel: As, Sb, P n típusú • Három vegyértékűvel: In, Ga, p típusú Járművillamosságtan-elektronika I.

  23. Járművillamosságtan-elektronika I.

  24. Dióda • Villamos visszacsapó szelep • P-n átmenetben a szabad elektronok a p rétegbe diffundálnak, míg a lyukak az n réteget pozitív töltésűvé teszik • Záró irányú feszültséget rákapcsolva a potenciálgát nő • Nyitó irányban (p-re pozitív, n-re negatív) potenciálgát csökken Járművillamosságtan-elektronika I.

  25. Fajtáik • Egyenirányító diódák (Graetz híd) • Jel (kapcsoló) diódák • Teljesítmény diódák • Feszültség stabilizálás (Zéner) Járművillamosságtan-elektronika I.

  26. Graetz-kapcsolás Járművillamosságtan-elektronika I.

  27. Tranzisztorok • Három réteg, két átmenet • N-p-n ill. p-n-p • Három kivezetés (bázis, emitter, kollektor) • Bipoláris, térvezérelt • Erősítése β=50-200=IE/IB • Erősítés növelhető (Darlington kapcsolás) • Járműben általában kapcsoló üzemben használjuk (gyors, nagy záró irányú és kicsi nyitó irányú ellenállás) Járművillamosságtan-elektronika I.

  28. Jelölése: Járművillamosságtan-elektronika I.

  29. Tirisztorok • Négy réteg n-p-n-p • Három kivezetés (p1, n2 és p2,mint gate) • P2-re nyitó fesz. • Tirisztor begyújt • Kikapcsolni IA csökken- • tésével lehet • Vezérlő áram kicsi Járművillamosságtan-elektronika I.

  30. Karakterisztikája Járművillamosságtan-elektronika I.

  31. Triac • Két tirisztor közös gate-tel • Mindkét irányban szabályozható Járművillamosságtan-elektronika I.

More Related