1 / 43

Phase transition in Nuclei Olivier LOPEZ

Phase transition in Nuclei Olivier LOPEZ. Séminaire 1-2-3 – Décembre 2006 - LPC Caen. QGP . 200 A GeV . Hadron. 100 A MeV . Gas. 50 A MeV . Liquid. 20 A MeV . Phase diagram of NM. Big Bang. 20 200 MeV. Temperature. LG Coexistence. 1 5?. Density  .

omer
Download Presentation

Phase transition in Nuclei Olivier LOPEZ

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Phase transition in NucleiOlivier LOPEZ Séminaire 1-2-3 – Décembre 2006 - LPC Caen

  2. QGP 200 AGeV Hadron 100 AMeV Gas 50 AMeV Liquid 20 AMeV Phase diagram of NM Big Bang 20 200 MeV Temperature LG Coexistence 1 5? Density 

  3. Underlying Physics • DFT approach to nuclear physics: towards an universal functional • Study the energy functional for asymmetric nuclear matter • Constrain the isovector part of the energy (symmetry energy) • Produce sub- and super-saturation density matter through HI-induced reactions • Nuclear matter phase diagram and finite nuclei phase transitions • Scan the low-temperature region of the nuclear matter phase diagram • Characterize the phase transition (location, order, critical points,…) • Evidence finite size effects (anomalies in thermodynamical potentials) • Complementary to the ALICE Physics program at higher energy (QGP) • From finite nuclei to dense nuclear matter • Constrain Mean-Field models for Astrophysics • Study the structure and pahse properties of Neutron Star crusts • Understand the dynamics of supernova type II explosion (EOS)

  4. E = <y | H | y> H = <f | Heff | f > = E[r] Density Functional Theory Self-consistent mean field calculations (and extensions) are probably the only possible framework in order to understand the structure of medium-heavy nuclei.

  5. Symmetry energy (basics) • Standard Bethe-Weisäcker formula for Binding Energy : E = -avA + asA2/3 + acZ2/A1/3+asym(N-Z)2/A + d • Symmetry Energy : Esym = asym(N-Z)2/A is therefore the change in nuclear energy associated to the changing of proton-neutron asymmetry N-Z • In nuclear matter (isoscalar+isovector) : E(rn, rp) = E0(r) + E1(rn, rp) with E1(rn, rp) = S(r)(rn-rp)/r2 • Pressure : P = r2E/r

  6. Symmetry Energy (questions) • Little is known at super and sub-saturation density • Dependence on the neutron-proton asymmetry ?

  7. Multifragmentation and Phase transition Phase transition and Neutron stars (Extended) MF theories with a density functional constraint in a large density domain are a unique tool to understand the structure of neutron stars.

  8. Multifragmentationas a possible signature ofthe liquid-gas phase transition

  9. Threshold for Multifragmentation From G. Bizard et al., Phys. Lett. B 302, 162 (1993)

  10. Hot nuclei and de-excitation Evaporation Multifragmentation Vaporization E*/A (MeV) 1 3 8 r < r0 T= 5-15 MeV r ~ r0 T < 5 MeV r << r0 T>15 MeV

  11. Multifragmentation as a signal of liquid-gas phase transition? • Simultaneous emission for fragments : tff < tn • Equilibrated system in (r,T) plane : Isotropic emission • Nuclear system at sub-saturation density : r/r0 << 1

  12. tFF ~ tn Ncorr(qFF) - Nuncorr(qFF) R(qFF) = Ncorr(qFF) + Nuncorr(qFF) Multifragmentation as a simultaneous process Angular correlation functions : From D. Durand, Nucl. Phys. A 630, 52c (1998)

  13. Multifragmentation as an equilibrated process… The “rise and fall” of MF emission Universality Mass scaling From A. Schuttauf et al., Nucl. Phys. A 607, 457 (1996)

  14. Volume Multifragmentation at low density … Statistical Multifragmentation Model (SMM) Statistical weight : W = eS(V,T) V=(1+c)V0 with c>0 58Ni+197Au central collisions From N. Bellaize et al., Nucl. Phys. A 709, 367 (2002)

  15. Multifragmentation and statistical description • Reaction dynamics and Fermi motion is not taken into account → additional free parameter Erad (radial flow) for Statistical Models • Is explicitly incorporated in dynamical (semi-classical) approaches like HIPSE or QMD, (quantal) like AMD/FMD… From N. Bellaize et al., Nucl. Phys. A 709, 367 (2002)

  16. Heavy Ion Phase Space ExploratorD. Lacroix, A. Van lauwe and D. Durand, Phys. Rev. C 69, 054604 (2004)

  17. Signals of Phase transitions

  18. Free nucleons gas E*  T SMM A=100 T coexistence 10 Back-bending 5 From INDRA collaboration (1999) Fermi gas E*  T2 E*/A 10 5 From J. Pochodzalla et al., Phys. Rev. Lett. 75, 1040 (1995) Signals of phase transition • Caloric curve: T=f(E*)

  19. S Entropy T T-1 = (dS/dE)V C12 C  C1 + C2 = Temperature C1 - s12/T2 C C = dE/dT Specific heat Energy Latent Heat Signals of (1st order) Phase transition Thermodynamical relations : T-1 = (S/ E) • Abnormal energy fluctuations C = ( E/  T) = -T2(2S/  E2) If one divides the system in two independent subsystems (1)+(2) : Et = E1 + E2 And we get for the partial energy fluctuations of system (1) : s12 = T2 C1C2/(C1+C2) (true at all thermodyn. conditions)

  20. Signals of (1st order) Phase transition Peripheral Au+Au reactions Central Xe+Sn reactions M. D’Agostino et al., Physics Letters B 473, 219 (2000) N. Le Neindre, PHD Thesis Caen (1999)

  21. Liquid-gas phase transition • Critical phenomena : power laws, scalings, exponents • Caloric curves : back-bending • Universal scaling : D-scaling (order-disorder) • Disappearance of collective properties : Hot GDR, Shape transition (Jacobi) • Abnormal fluctuations : negative capacities/susceptibilities • Charge correlations : spinodal decomposition • Bimodality : order parameter for phase transition

  22. The case of Bimodality

  23. Bimodality : theoretical aspects • Related to a convex intruder of the S(X) • Appearance of a double-humped distri-bution for the proba-bility distribution P of the order parameter X • Examples : X=E X=V From Ph. Chomaz, M. Colonna and J. Randrup, Phys. Rep. 389, 263 (2004)

  24. Bimodality : experimental results • Peripheral Au+Au reactions at E/A=80 MeV • Transverse energy sorting (→ T) • Bimodality of Zmax, Zasym is observed in the third panel From M. Pichon, B. Tamain et al., Nucl. Phys. A 779, 267 (2006)

  25. Bimodality : interpretation Normal density (J) vs dilute (E*) system ? Same T From O. Lopez, D. Lacroix and E. Vient, Phys. Rev. Lett. 95, 242701 (2005)

  26. Futures

  27. SPIRAL/SPIRAL2 • Isospin dependence of the level-density parameter for medium-sized nuclei • Limiting temperature for nuclei • Cluster emission threshold for p-rich nuclei around A=115 for moderate E*/A (~1-2 MeV) • Isospin dependence of the liquid-gas phase transition • Mass splitting of p-n in asymmetric nuclear matter • Link to astrophysics and compact nuclear matter (NS)

  28. INDRA-SPIRAL experiments : status • E494S : Isospin dependence of the level-density parameter • 33,36,40Ar + 58,60,64Ni at E/A=11.1-11.7 MeV => Pd isotopes, E*/A=2-3 MeV • Coupling with VAMOS • Scheduled in March-April 2007 (moving D5-G1 is planned 01/07) • E475S : Emission threshold for complex fragments from compound nuclei of A=115 and N~Z (p-rich) • 75,78,82Kr + 40Ca at E/A=5.5 MeV • Done in March 2006 (calibration under progress)

  29. Isospin dependence of the level-density parameter a • E* dependence : a = a A with : a = 1/(K+kE*/A) K =7 , k =1.3 • N-Z dependence is assumed • (A) a = a Ae-b(N-Z)2 • (B) a = a Ae-g(Z-Z0)2 From S. I. Al-Quraishi et al., Phys. Rev. C 63 (2005), 065803

  30. Long-term range

  31. MINIBALL/MSU EOS ALADIN ISIS INDRA CHIMERA NIMROD LHASSA Need for new detectors 4p array (exclusive measurements) Low Energy thresholds (E/A<1 MeV/u) Mass and charge identification (1<A<100) Very High angular resolution (Dq<0.5°) Modularity / Flexibility (coupling/transportation) FAZIA Four pi A and ZIdentification Array

  32. FAZIA : next generation 4p array • Compactness of the device • Ebeam from barrier up to 100 A.MeV • Telescopes: Si-ntd/Si-ntd/CsI • Possibility of coupling with other detectors • Complete Z (~70) and A (~50) id. • Low-energy & identification threshold • Digital electronics for energy, timing and pulse-shape id.

  33. FAZIA project • Visit us at http://fazia.in2p3.fr Courtesy of JM Gautier (LPC Caen)

  34. FAZIA : next-gen 4p array E/A= 6.2 MeV • Digital electronics • Pulse Shape Analysis E/A= 7.8 MeV 36Ar 40Ar Tandem Orsay (2003) CIME / GANIL Sept. 06

  35. Long-term range is: EURISOL • (I) Density dependence of the nuclear symmetry energy (DDSE) 56Ni - 74Ni, 106Sn -132Sn, E/A = 15 – 50 MeV • (II) Neutron-Proton effective mass splitting (NPMS) 56Ni - 74Ni, 106Sn - 132Sn , E/A=50-100 MeV • (III) Isospin-dependent phase transition (IDPT) 56Ni - 74Ni, 106Sn -132Sn, 200Rn - 228Rn, E/A = 30 – 100 MeV • (IV) Isospin fractionation, Isoscaling (IFI) 56Ni - 74Ni, 106Sn -132Sn, 200Rn - 228Rn, E/A = 30 – 100 MeV Key Points are : • large panoply of beams (light, medium, large A) over the maximal N/Z extension • Beam energy range around and above the Fermi domain (15-100AMeV) • Beam intensity around 106-108pps, small emittance, good timing (<1ns)

  36. Phase transition in Nuclei To be continued…

  37. Nature of Phase transitions Phase transitions reflect the self-organization of a system and are ruled by common properties such as predicted by universality classes and Renormalization Group theory. • Solid, liquid and gas phases • Plasma (electrons, QGP, ...) • Magnetic properties in solid state matter (para/ferromagnets) • Bose-Einstein condensates • Superfluidity (Cooper pairs) • Fund. symmetries breakings (matter/antimatter, electroweak, …) • Nuclei ! …

  38. Boltzman-Langevin (Stochastic Mean-Field) T (MeV) Metastable regions 10-15 “GANIL” trajectory Spinodal region /0 0.3 1 A. Guarnera et al, Phys. Lett. B 403, 191 (1997) Privileged wavelength are formed : R ~10 fm R  10 fm Dynamics of the phase transitionSpinodal decomposition?

  39. Neutron-proton asymmetry is different between the bulk and surface for exotic nuclei Modified BW formula : E = -aVA + asA2/3 + ac + + d For A>>1, → asym, forsmall A → weakening of SE r(r) neutron proton r asym asym V V Symmetry Energy (future) (N-Z)2 Z2 A1/3 1 + A-1/3asym/asym V S A

  40. Multifragmentation as an equilibrated process… 129Xe+natSn at 50AMeV; Multifragmentation dN dcos(qcm) -1 cos (qcm) +1 Isotropic emission in cm frame From N. Marie et al., Phys. Lett. B 391, 15 (1996)

  41. Phase transition and critical phenomena • Power laws and scaling • Power law of the A-distribution : P(A) = A-t f(eAs) e = (T-Tc)/Tc • 3D Ising Model : t = 2.2 s = 0.66 • Experimentally : t = 2.12 ± 0.13 s = 0.64 ± 0.04 From M. D’Agostino et al., Nucl. Phys. A 650, 329 (1999)

  42. Bimodality : exp. results • Observed whatever the sorting • Characteristic of a 1st order phase transition

  43. 4He+116-124Sn E=180 MeV 124Ba 130Ba 138Ba E*/A ≈ 1.5 MeV From J. Brzychczyk et al., Phys. Rev. C 47, 1553 (1993) Statistical Models and drip lines • Enhancement of Carbon emission for p-rich nuclei • Hauser-Feshback calculations (BUSCO) for Ba isotopes 75,78,82Kr + 40Ca at E/A=5.5 MeV forming CN 115-122Ba !

More Related