1 / 1

1.0 INTRODUCTION

Ihsan Uluturk Dr. Yong Kim University of Massachusetts Dartmouth Bioengineering Department . Developing ion exchange membrane from recycled waste expanded polystyrene for heavy metal removal from industrial wastewater. 1.0 INTRODUCTION. 4.0 RESULTS AND DISCUSSION.

onaona
Download Presentation

1.0 INTRODUCTION

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ihsan Uluturk Dr. Yong Kim University of Massachusetts Dartmouth Bioengineering Department Developing ion exchange membrane from recycled waste expanded polystyrene for heavy metal removal from industrial wastewater 1.0 INTRODUCTION 4.0 RESULTS AND DISCUSSION Fig.5. EDS analyzing micrographs and elemental analysis of Sulfur Fig.6. The relationship between Fig.7. The relationship between sulfonation time and fiber diameter sulfonation time and IEC (a) (b) (c) Fig.8. SEM images of electrospun fibers of polystyrene (a) untreated PS nanofiber mat (b) 10 min sulfonated PS nanofiber mat c) 100 min sulfonated PS nanofiber mat • Expanded Polystyrene (EPS) is one of the most common forms of packaging and cushioning material used today. According to the U.S. Post-Consumer & Post Commercial EPS Recycling Collection Data, in 2010 130 million pounds of EPS was sold domestically; of this only 37.1 million pounds (28%) was recycled (2010 EPS Recycling Rate Report, 2010). In its solid form polystyrene is one of the densest plastics (~1050kg/m3), but when expanded in foam form, EPS is approximately 96% air. These lightweight, but large volumes of materials fill our landfills and do not degrade. • Heavy metals, such as copper, zinc, nickel, chromium and tin are commonly used in the electroplating industry to form a thin layer on the various products, and thus, to achieve high surface resistance against the severity of the environment. The major part of heavy metals employed in the electroplating process is deposited on the surface of products being plated; however, a minor part of these heavy metals is discharged as rinsing wastewater(Kuchar, et al. 2006).Wastewater discharged from industries like plating processes contains many heavy metals such as copper, lead, chromium, nickel, iron and zinc etc. have a fatal effect on the human body as well as causing environmental pollution(Eom, Lee, & Kim, 2005). • In this study, recycled waste polystyrene was electrospun to develop ion exchange membrane to remove heavy metals from industrial wastewater. • Main Objective • To develop ion exchange membrane from waste expanded polystyrene (EPS) for heavy metal removal from industrial wastewater • Specific Objectives: • To produce electrospun nanofibers from recycle waste expanded styrofoam • To convert the nanofibers into polymer nanofiber ion exchangers (PNIE) • To experimentally evaluate the performance of the polymer nanofiber ion exchangers • For Virgin Polystyrene • An electrospun polystyrene nanofiber mat was treated by immersion in 98% sulfuric acid (Aldrich) and silver sulfate catalyst with stirring. • Four different PNIE samples were prepared by changing the sulfonation time. Images in Fig. 4(b)–(c) show two of the PNIE samples for treatment times of 10 and 100min • EDS micrographs confirm that the nanofibers were sulfonated. • The Ion Exchange Capacity(IEC) increases for longer sulfonation times. • The average fiber diameter is changing as the sulfonation time increases. • The SEM pictures show that the number of fiber breaks increases as the sulfonation time increases. • Fig.1. EDS analyzing micrographs and elemental analysis of Sulfur • Fig.2. The relationship between Fig.3. The relationship between • sulfonation time and fiber diameter sulfonation time and IEC • (a) (b) (c) • Fig.4. SEM images of electrospun fibers of polystyrene (a) untreated PS nanofiber mat; (b) 10 min sulfonated PS nanofiber mat c) 100 min sulfonated PS nanofiber mat • For Recycled Waste Expanded Polystyrene • An electrospun polystyrene nanofiber mat was treated by immersion in 98% sulfuric acid (Aldrich) and silver sulfate catalyst with stirring. • EDS micrographs confirm that the nanofibers were sulfonated. • Recycled waste expanded polystyrene nanofiber ion exchanger membrane has less fiber breaks than those fibers produced from virgin polystyrene. • Average Ion exchange capacity of recycled waste expanded polystyrene is smaller than those produced from virgin polystyrene • Average fiber diameter of recycled waste expanded polystyreneis greater than those produced from virgin polystyrene. 2.0 OBJECTIVE 1 5.0 CONCLUSIONS & FUTURE WORK • Conclusions • In this work, we investigate recycled waste Expanded Polystyrene (EPS) in an effort to convert the EPS into Polystyrene nanofibers which is used for membrane materials. • Also, polymer nanofiber ion exchange fibers (PNIE) were produced by electrospinning solutions of dissolved polystyrene to produce nanofibers and sulfonating the fiber surface. • Future Work • Mechanical, Thermal and Chemical stability of the Polymer Nanofiber Ion Exchanger membranes could be improved by modifying polymer. 3.0 MATERIALS AND METHODS • Materials • Chemicals • Silver Sulfate • Styrene Resin M.w 210,000(Scientific Polymer Inc.) • Styrofoam • Solvents • Dimethylformamide(Acros Organics) • Tetrahydrofuran(Fisher Scientific) • Sulfuric Acid(Aldrich) • Copper Sulfate •  Methods • Electrospinning • Sulfonation • Instruments • Morphological changes inspected by Joel JSM 5610 Scanning Electron Microscope (SEM) • Quincy Lab Inc. AF Model 40 Lab Oven set at 100°C • Resistance Measured in according to AATCC Test Method 76-2005. • Atomic absorption spectroscopy(Perkin Elmer AA 300) • Energy dispersive X-ray spectrometry (EDX, JSM-5610 EDX spectrometer) 6.0 REFERENCES 1. 2010 EPS REcycling Rate Report. Crofton: Alliance of Foam Packaging Recyclers. 2. Eom , T.-H., Lee , C.-H., & Kim, J.-H. (2005). Development of an ion exchange system for plating wastewater treatment. Desalination 180 , 163-172. 3. Kuchar, D., Fukuta, T., Onyango, M. S., & Matsuada, H. (2006). Sulfidation treatment of copper-containing plating sludge towards copper resource recovery. Journal of Hazardous Materials B138, 86-94. ACKNOWLEDGMENTS Special Thanks to •Dr. Chen-Lu Yang - Advanced Technology and Manufacturing Center(ATMC)- University of Massachusetts Dartmouth

More Related