1 / 25

( 飛行 K - , n) 反応による K - pp 生成スペクトルと K - - 核間有効ポテンシャルのエネルギー依存性

ストレンジネス核物理 2010 、 KEK 小林ホール、  2010 年 12 月 3 日. ( 飛行 K - , n) 反応による K - pp 生成スペクトルと K - - 核間有効ポテンシャルのエネルギー依存性. K - pp formation spectrum via (in-flight K - , n) reaction, and energy dependence of K - -nuclear effective potential. Takahisa Koike RIKEN Nishina center Toru Harada

orita
Download Presentation

( 飛行 K - , n) 反応による K - pp 生成スペクトルと K - - 核間有効ポテンシャルのエネルギー依存性

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ストレンジネス核物理2010、 KEK 小林ホール、 2010年12月3日ストレンジネス核物理2010、 KEK 小林ホール、 2010年12月3日 (飛行 K-, n) 反応による K-pp 生成スペクトルとK--核間有効ポテンシャルのエネルギー依存性 K-pp formation spectrum via (in-flight K-, n) reaction,and energy dependence of K- -nuclear effective potential Takahisa Koike RIKEN Nishina center Toru Harada Osaka E.C. Univ.

  2. Simultaneous mesurement ◆ J-PARC E15 experiment for searching “K-pp” 3He(In-flight K-, n) “K-pp” missing-mass at pK- = 1 GeV/c and qn=0ospectroscopy + “K-pp” →Lp → p-pp invariant-mass detecting decay particles spectroscopy from “K-pp” Our purpose: theoretical calculation of 3He(In-flight K-, n) inclusive/semi-exclusive spectra within the DWIA framework using Green’s function method. T. Koike & T. Harada, Phys. Lett. B652 (2007) 262-268. T. Koike & T. Harada, Nucl. Phys. A804 (2008) 231-273. T. Koike & T. Harada, Phys, Rev. C80 (2009) 055208. c.f. J. Yamagata-Sekihara et al., Phys, Rev. C80 (2009) 045204.

  3. Why the magnitudes of the calculated cross sections are so different each other? Koike & Harada Inclusive spectra Yamagata-Sekihara et al.

  4. Why the magnitudes of the calculated cross sections are so different each other? Koike & Harada Conversion spectra Yamagata-Sekihara et al.

  5. ◆Distorted-Wave Impulse Approximation (DWIA) Strength function Kinematical factor Fermi-averaged ementary cross-section K- + n → N + Kbar in lab. system Morimatsu & Yazaki’s Green function method Prog.Part.Nucl.Phys.33(1994)679. Green’s function K-pp system → employing K--“pp” effective potential recoil effect Distorted wave for incoming(+)/outgoing(-) particles → Eikonal approximation neutron wave function → (0s)3 harmonic oscillator model

  6. ◆ Difference in DWIA formulation Koike & Harada Kinematical factor Fermi-averaged ementary cross-section Yamagata-Sekihara et al. ementary cross-section in free space

  7. ◆ Kinematical factor a + “N”→ b + c : Two-body kinematics → subscript (2) a + A → b + A’: Many-body kinematics b = 1.5 ~ 2.0 in bound state region.

  8. pK =1 GeV/c n K- p p pn K- n p q p ◆ Momentum transfar for (K-, N) reactions q = pK - pn < 0 q > 0 → b< 1 e.g. (p, K), (K-, K+) forward q ~ 0 → b~ 1 e.g. (K, p) recoilless backward q < 0 → b> 1 e.g. (K-, N) The sign of q is important!

  9. ◆ KbarN elementary cross sections in lab. system reduced to ~ 60% in Free Space with Fermi-average

  10. ◆ Difference in DWIA formulation Koike & Harada Fermi-average ( 1.5 ~ 2.0 ) ×0.6 = 0.9 ~ 1.2 Eventually, b [ds/dW] is not so much different! Yamagata-Sekihara et al. ementary cross-section in free space

  11. ◆ Another difference in DWIA formulation --- w/o recoil effect Morimatsu & Yazaki’s Green function method Prog.Part.Nucl.Phys.33(1994)679. Green’s function K-pp system → employing K--“pp” effective potential Recoil effect Distorted wave for incoming(+)/outgoing(-) particles → Eikonal approximation neutron wave function → (0s)3 harmonic oscillator model

  12. ◆ Recoil effect Bound state peak is enhanced by a factor of ~1.8 with recoil factor.

  13. ◆ Difference in DWIA formulation Koike & Harada Fermi-average ( with recoil ) ( 1.5 ~ 2.0 ) ×0.6 × 1.8= 1.6 ~ 2.2 ~ a factor 2 difference --- Not enough? Yamagata-Sekihara et al. ( without recoil ) ementary cross-section in free space

  14. n K- K- n K- p p p 3He p p - 3He n K0n p - p K0 K- n ◆ Yet another difference --- charge basis picture vs. isospin basis picture K-pp – Kbar0np coupling should be considered in charge basis.

  15. n K- K- n K- p p p 3He p p - 3He n K0n p - p K0 K- n ◆ Charge basis picture Yamagata-Sekihara et al. + incoherent sum

  16. ◆ Isospin basis picture N Koike & Harada - K K- p p - K N N N N N N - - K0n p - [ K×{NN}I=1]I=1/2 isoscalar transition amplitude

  17. ◆Comparison of Fermi-averaged elementary cross sections between charge and isospin basis In charge basis, = 13.9 mb/sr K-+n → n+K- = 7.5 mb/sr K-+p → n+Kbar0 In isospin basis, = 1.2 mb/sr = 16.4 mb/sr, D I = 0 D I = 1

  18. Yamagata-Sekihara et al.

  19. ◆Comparison of the calculated inclusive spectra Koike & Harada Inclusive spectra Yamagata-Sekihara et al.

  20. ◆Comparison of the calculated inclusive spectra Yamagata-Sekihara et al. Koike & Harada isospin basis charge basis [Kbar×{NN}I=1]I=1/2 K-pp + Kbar0np QF-peak height ~ 160 mb/sr ~ 100 mb/sr ~ 160 mb/sr ×0.75= ~ 120 mb/sr K-pp-Kbar0np coupling effect

  21. ◆Comparison of the calculated conversion spectra Koike & Harada Conversion spectra Yamagata-Sekihara et al.

  22. ◆Comparison of the calculated conversion spectra Yamagata-Sekihara et al. Koike & Harada isospin basis charge basis [Kbar×{NN}I=1]I=1/2 K-pp + Kbar0np Bound state peak height ~ 15 mb/sr ~ 25 mb/sr ~ 15 mb/sr × 0.75× 1.8= ~ 20 mb/sr K-pp-Kbar0np coupling effect Recoil effect

  23. ◆ Summary on the cross section ・ The magnitudes of the calculated cross sections are rather consistent with each other! • Accidentalcoincidence: • b ×[ds/dW] (Fermi-average) ~ [ds/dW] (Free-space) b. Few-body system: Recoil effect enhances a bound-state peak by a factor 1.8. c. ( [ K-pp ] + [K0barpn] in charge basis ) × 0.75 ~ [ KbarNN ] in isospin basis ・ Do NOT directly compare the charge basis calculation with the isospin basis one. Experimentally,K-pp and K0barpn in charge basis can not be distinguished.

  24. The integrated cross section of L = 0 K- conversion part amounts to 3.5 mb/sr. L = 0 component L = 0K- conversion L = 0 K- escape

  25. L = 0 K- conversion from K- pp bound-state L = 0 component L = 0 other K- conversion process L = 0 K- escape

More Related