1 / 40

Les échelles de spins conductrices: une approche pour les supras hauts Tc

Les échelles de spins conductrices: une approche pour les supras hauts Tc. D.Jérome, Orsay avec les contributions de Y.Piskunov, P.Wzietek, P.Auban, C.Bourbonnais, H.Mayaffre, A.Revcolevschi,U.Ammerhal, G.Dhalenne and A.Yakubovsky. Low dimensional magnets.

rendam
Download Presentation

Les échelles de spins conductrices: une approche pour les supras hauts Tc

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Les échelles de spins conductrices: une approche pour les supras hauts Tc D.Jérome, Orsay avec les contributions de Y.Piskunov, P.Wzietek, P.Auban, C.Bourbonnais, H.Mayaffre, A.Revcolevschi,U.Ammerhal, G.Dhalenne and A.Yakubovsky.

  2. Low dimensional magnets Planes: Heisenberg antiferromagnet Long range ordered <Si.Sj> @ S2 cos Q. (ri-rj) Q=(p/a,p/a) Gapless excitations, spin waves Chains: Heisenberg chain S=1/2 Almost ordered state at T=0, quantum fluctuations <Si.Sj> @1/ (ri-rj) , c(T=0) @1/J Gapless spin excitations Ladders: (even number of legs) Cu 2+ (S=1/2) J J ’ <Si.Sj> @ exp- (ri-rj) /x spin liquid N= x/a spins in a box --> Quantization D= J/N=J/2 --> spin gap

  3. Ladders in organic compounds Chabousssant et-al, PRL, 79, 925, 1997 Cu 2+ (S=1/2) Cu-Cu superexchange via Cl

  4. Spin gap in isotropic ladders From Dagotto and Rice, Science, 271, 618, 1996 Magnon and QP modes

  5. Doping ladders, quasi-particles in spin ladders Ground state Hole in Cu2O3 ’ << 2 J’  Cost: J Bound quasiparticles Excited states -Magnon excitations with a modified gap -Excited quasiparticles t-J model, strong coupling Binding energyfor a QP pairEB= J’-2t’-2t QP is a localized spin S=1/2 EB< Ds

  6. Correlations, pairing, density waves, AF in doped ladders DMRG calculation Hayward et-al PRL 75, 926, 1995 Noack et-al 96 Power law Exponential decay Magnetism: exp-(x/r) -1, spin gapped Pairing: 1/r, power law like 1D systems @ negative U model d-wave pairing -0.08 -0.08 0.1 Noack et-al 96 Look for superconductivity in doped spin ladders ? E.Dagotto and T.M.Rice Science 271, 618, 1996

  7. Spin ladders in La2Cu2O5 Hiroi and Takano Nature 377, 41, 1995

  8. Hole doping in (La/Sr)2Cu2O5 Hiroi and Takano Nature 377, 41, 1995 No superconductivity obsereved AF ordering observed by NMR, mSR at 110K In La2Cu2O5 Interplay between spin liquid and AF due to the non frustrated interladder interaction

  9. Spin ladders in cuprates : 2 versus 3 leg ladders Cu2O3 ladders M.Takano et - al 1996 SrCu2O3 Sr2Cu2O3 J=1000-1500K via Cu-O-Cu superexchange via 180° bond, antiferro J interladder due to Cu-O-Cu 90° bond, much smaller and ferro + frustration Azuma et al 1994

  10. Structure of the ( Sr/Ca)14Cu24O41 series Mc Carron, 1998 Siegrist 1988 Nominal Cu valence +2.25 0.25 hole/Cu 14Cu(ladders)+10Cu(chains)/form.unit --> Non uniform distribution of holes

  11. Faraday susceptibility Kato et-al Physica C, 263,482, 96 Carter et-al PRL 77, 1380, 96 No contribution from ladders:large spin gap Formation of a spin singlet dimerized ground state in chains. --> Local susceptibility measurements are needed for the study of the ladders.

  12. Distribution of holes in chains and ladders from the optical conductivity Osafune et-al, PRL,78, 1980, 1997 Ca doping > transfer of spectral weight at low energy into the ladders Redistribution of holes between chains and ladders Ladder hole doping increases from 0.07 to 0.20 between Ca0 and Ca12

  13. x>8 ‘1D conductor’ Transport in doped spin ladders Ca0------>Ca12 from H.Eisaki, University of Tokyo (private comm)

  14. Ca11.5 superconductivity under pressure Nagata et-al 1998

  15. Superconductivity in Ca12,under pressure, Orsay Mayaffre et-al Science 1998 P.Auban et -al Synthetic Metal 1999 1D 2D 1D conductor becoming an anisotropic 2D conductor under pressure

  16. Charge ordering in ladders vs doping From the dielectric response: CDW Destruction of the CO-CDW state upon doping A more 2D conductor under doping CDW gap decreases faster than the Spin gap Vuletic et-al PRL 90 , 2003

  17. NMR in spin ladders

  18. 63 Cu NMR shifts, Knight shifts =>local susceptibility on the ladder subsytem No pressure dependence of Korb Gapped spin excitations c@ T -1/2exp-Ds/T (Troyer formula at low temperature)

  19. 63 Cu Knight shifts =>local susceptibility in Ca12 under pressure No pressure dependence of Korb Gapped spin Excitations at low pressure c@ T -1/2exp-Ds/T (Troyer formula) Low lying spin excitations in Ca12 under pressure

  20. Spin gap and low lying modes seen by 17O NMR

  21. Summary of the data for x= 0, 12

  22. Relevance of the b- axis Spin gap versus Ca doping and pressure Pachot et-al PRB 59, 12048, 1999 Piskunov et al EPJB 24,443 2001 see also Magishi et-al PRB 98

  23. Spin gap versus superconductivity in Ca12 Superconductivity detected by AC Susceptibility at 36 kbar Piskunov et-al EPJ B 24, 443, 2001

  24. Spin gap versus Ca doping and pressure D D D D(nh) / D0 Theory (DMRG) Noack et al PRL 94 - Up to Ca8 doping dependence of the gap is according to theory,gap with hole doping - Above Ca8 under pressure: more subtle! role of interladder coupling is possible ?

  25. Existence d ’excitations électroniques sans gap dans Ca12 Relaxation sur O(1) et O(2)

  26. Low lying modes in Ca12 Relation avec le Knight shift dans les mêmes conditions de pression

  27. Magnon branches in spin ladders Triplet excitations q @p q @ 0 E(kx)= J ’ + J coskx - One magnon branch (gapped) degenerate in zero magnetic field - Continuum of two magnons states

  28. Nuclear relaxation mechanisms in undoped ladders Direct magnon process: no energy conservation wo<<Ds Two magnon Raman processes between thermally excited states Momentum transfer q=0 and q= p Relaxation and dynamical structure factor Naef and Wang, PRL, 84,1320,2000

  29. Dynamical sructure factors derived from NMR relaxation Piskunov et-al, PRB, 69, 014510,2004 Use of the values for the spin gap determined experimentally

  30. Ce qui a été appris par les mesures deT1 Détermination expérimentale des facteurs de structure dynamique S(q,w) Les processus multi-magnons q=0 et p contribuent au T1 dans les échelles dopées comme pour des échelles non dopées isolées. Mise en évidence du cross-over spin-gap/paramagnetism par le max de S(p,p)/S(0,0) à Tcr= Ds/2. Bonne corrélation entre les deux. La dynamique des échelles isolées n’est plus suivie en présence de porteurs libres à basse température, (Ca12 sous pression).

  31. Spin gap versus superconductivity Phase transition: Piskunov et al EPJB 24,443,2001 P<Popt Gapped spin excitations and hole pairs with EB@Ds SC correlations cSC@ Ds/T Coherence lenght x@ t///Ds Josephson coupling between ladders -------------------------- P>Popt Deconfinement of holes Fermi liquid 2D Similar model SP AF in organics C.Bourbonnais and L.Caron, 1991

  32. Where do the holes go upon Ca substitution and pressure? Use a local probe which is sensitive to the charge distribution on the ladders, the ion and vicinity Quadrupolar shifts of the NMR lines on 63Cu and 17Oxygen

  33. Ladder sites and NMR spectrum Déplacements quadrupolaires du 1er ordre ou 2éme ordre

  34. Comment les effets quadrupolaires apparaissent par rapport aux déplacements magnétiques

  35. Les résultats bruts de RMN/RNQ

  36. Spin ladders:hole distribution This experiment is quite accurate for variation of the hole density vs x and P but not for its absolute value Some calibration is needed, optics and X-ray absorption Backtransfer from ladders to chains Osafune and Nucker n = 0.06 hole/Cu(1) at 300K in Ca0

  37. Pression et dopage Pachot et-al PRB 59, 12048, 1999 a est peu sensible à la pression dans Ca12

  38. 1 , 2 e x p , 1 b a r ? s e x p , 3 2 k b a r 1 , 0 ? s t h e o r ? L s 0 , 8 C a 0 ( 1 b a r ) C a 2 ( 1 b a r ) 0 , 6 C a 5 ( 1 b a r ) C a 0 ( 3 2 k b a r ) C a 8 ( 1 b a r ) 0 , 4 C a 9 ( 1 b a r ) C a 2 ( 3 2 k b a r ) C a 1 2 ( 1 b a r ) 0 , 2 C a 5 ( 3 2 k b a r ) C a 1 2 ( 3 2 k b a r ) C a 8 ( 3 2 k b a r ) C a 9 ( 3 2 k b a r ) 0 , 0 0 , 0 0 , 1 0 , 2 0 , 3 0 , 4 Le gap de spin en fonction des trous ( L a , S r ) C a C u O D D 1 4 - x x 2 4 4 1 D L a 5 ( 1 b a r ) D a 5 ( 3 2 k b a r ) 0.06 0.09 0.12 n h 0<x<8 , équivalence pression et dopage en Ca 8<x, dopage en Ca augmente le caractère 2D pression augmente les trous, nécessaire pour obtenir la supra

  39. Le diagramme de Tallon 45 60 30 Pressure

  40. Conclusion Possibilité de contrôler le caractère 2D et la densité de porteurs Ca et pression sont nécessaires pour obtenir les conditions de la supra Grande analogie avec le diagramme des hauts Tc Supra possible par le couplage de porteurs libres dans un conducteur devenu 2D

More Related