1 / 72

THE BI-CRITERIA DOUBLY WEIGHTED CENTER-MEDIAN PATH PROBLEM ON A TREE

Presenter: 陳思佑 鄭仲鈞 吳佳欣 高新綸. THE BI-CRITERIA DOUBLY WEIGHTED CENTER-MEDIAN PATH PROBLEM ON A TREE. 2007.06.13. J. Puerto, A.M. Rodriguez-Chia, A. Tamir, & D. Perez-Brito. Outline. Abstract Critical value for the weighted path center problem

rianna
Download Presentation

THE BI-CRITERIA DOUBLY WEIGHTED CENTER-MEDIAN PATH PROBLEM ON A TREE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Presenter: 陳思佑 鄭仲鈞吳佳欣 高新綸 THE BI-CRITERIA DOUBLY WEIGHTED CENTER-MEDIAN PATH PROBLEM ON A TREE 2007.06.13 J. Puerto, A.M. Rodriguez-Chia, A. Tamir, & D. Perez-Brito

  2. Outline • Abstract • Critical value for the weighted path center problem • Obtaining the weighted center-median non-dominated set • The non-dominated set with length constraint

  3. Abstract Presenter: 陳思佑

  4. Problem • Given • T: a tree network with n node • P*: a given subset of simple path in T • PL: the subset of all discrete paths (length < L) • Consider a path P, P in PL • P: a path-shaped facility • Tree node: the customers • How to calculate the total transportation cost from customers to facility

  5. From title… 5 • THE BI-CRITERIA DOUBLY WEIGHTED CENTER-MEDIAN PATH PROBLEM ON A TREE • Doubly weighted • Node: center-weight u, median-weight w (nonnegative) • Bi-criteria • Weighted path center criterion • maximum center-weighted distance • MAX(P) = max ubd(vb, p), vb in V • Weighted path median criterion • sum of the median-weighted distance • SUM(P) = Σwbd(vb, p), b = 1 to n

  6. Path: (MAX(P), SUM(P)) • View as a outcome space • Path P -> (MAX(P), SUM(P)) • Finding all the non-dominated pointForm a set, NDO(P*) • P is non-dominate, if no path P’ • MAX(P’) <= MAX(P), SUM(P’) <= SUM(P) • MAX(P’) + SUM(P’) < MAX(P) + SUM(P) SUM(P) MAX(P)

  7. In this paper 7 • # of efficient paths: Ω(n2) • At most 2n non-dominated outcome • Generate in O(nlogn) optimal time SUM(P) MAX(P)

  8. Solve other model • Cent-dian model • Objective: convex combination of weighted center and weighted median function • Restricted model • Objective: minimize one of MAX or SUM, subject to an upper bound on the other one • After the set of non-dominated outcome has been obtained, all these problems are solve in linear time • Overall, O(nlogn)

  9. Summary of results

  10. Critical value for the weighted path center problem Presenter: 陳思佑

  11. vk Path P longest vb Critical value • A path P, vk in P • For P, if the maximum center-weighted distance to P is attained at vk, vk is critical • Max ubd(vb, P) = max ubd(vb, vk) • Compute the set of all the critical value=> compute all the different MAX(P) • Will prove that the cardinality is at most 2n=> |NDO(P*)| <= 2n

  12. In this problem v1 • T = (V, E) • V = {v1, …, vn} • E = {e2, …, en} • An edge ej is identified as an interval of length lj,We can refer to its interior points, continuous • Discrete path • The endpoints of path are nodes of T, not arbitrary point e2 v2

  13. Continuous weighted 1-center problem v1 = cu • Min max ubd(x, vb) = max ubd(cu, vb) • cu can be obtained in O(n), center • Add cu, and assume T is rooted at cu • Identifies bottleneck nodes, vs, vt • v1 in Pst, usd(vs, v1) = utd(vt, v1) = max uid(vi, v1) • S ~> t, diameter v2 vt vs

  14. v1 = cu • Consider any pair of subtrees, Ts and Tt • vs in Ts, vt in Tt • Ts∩Tt = {v1}, Ts∪Tt = T • 3 sets • Ps = {P in P*, P in Ts} • Pt = {P in P*, P in Tt} • P’ = {Pij in P*, vi in Ts, vj in Tt} v2 vt vs Tt Ts

  15. Theorem • A denote the set of distinct MAX(P) for all path P • |A| <= 2n

  16. Prove (1) • |P*| <= n(n+1)/2 • Pijin P’ can be represented as the union of Pi1, Pj1 • βsi = max ukd(vk, Pi1), vk in Ts • βtj = max ukd(vk, Pj1), vk in Tt • MAX(Pij) = max(βsi, βtj) v1 = cu v2 vt vs Tt Ts

  17. Prove (2) • P in Ps • v1 is a continuous weighted center • Let vk be the closet node to v1 in P • MAX(P) = max uad(va, vk), vk is critical • Define δk = max uad(va, vk) • MAX(P) is an element in {δk: vk in Ts} • P in Pt, same v1 = cu vk v2 vt vs Tt Ts

  18. Prove (3) • P’: MAX(Pij) = max(βsi, βtj) • Ps: MAX(P) is an element in {δk: vk in Ts} • Pt: MAX(P) is an element in {δk: vk in Tt} • βsi = max ukd(vk, Pi1), vk in Ts • βtj = max ukd(vk, Pj1), vk in Tt • δk = max uad(va, vk) • Define A* = {βsi: vi in Ts} ∪{βtj: vj in Tt} ∪{δk: vk in V} • A <= A* n n

  19. Conclusion • The set A* is a superset of A • We next refine the definition of a superset contaning A

  20. Critical value for the weighted path center problem (2) Presenter: 鄭仲鈞

  21. Notation Definition • Optimalweighted path center : Ppq • Optimal means: • 假設這樣的path不只一條,取其交集 這樣的交集一樣是optimal

  22. Optimal path

  23. Optimal path

  24. Notation Definition • Va(k) : vk這個節點,延path往下走的Children所構成的點集合。vk屬於Ppq上去除v1的點集合。

  25. Notation Definition • For v1: 分為Ts方向和Tt方向,分別是 • For vp and vq: 因為已經走到path的末端 => Va(p)就直接相當於vp的Children的點集合 同理對vq也是一樣

  26. Notation Definition • γk : vk延path走下去,離vk最遠點和vk的距 離。即: • γ1s , γ1t : 因為v1往path兩邊走都可,因此 有兩個γ值。即: 但因為v1是continuous weighted center point => γ1s =γ1t => 令γ1=γ1s =γ1t

  27. Graph of γk , γ1s , γ1t

  28. Notation Definition • εs, εt : Ts和Tt上,離optimal path Ppq 最遠的點,到的距離Ppq。即: 根據定義,明顯的: MAX(Ppq) = max{εs, εt }

  29. Graph of εs, εt

  30. Properties of Ppq • 此一性質即是說明,對任一點vk來說, 往path處走去的最遠Children的距離(γk), 必定比不往path處走去之最遠Children還遠: 並且γk必定比εs, εt還要大: Why?

  31. Properties of Ppq 假若此性質不成立,代表 optimal path不再是optimal。 =>path應該往較長的那個方 向走,才可以有效的減短 MAX(Ppq) = max{εs, εt } 也就是說,這是optimal path自然產生出的性質。 ”往path走的最遠子節 點,才有可能是其最 遠的子節點。”

  32. Properties of Ppq _ • Lemma:任何一條屬於P(端點跨過Ts-v1-Tt 的路徑之集合)的路徑,其Critical node 必定在Ppq之上。

  33. Critical node

  34. Proof • 假設我們一行一行的看證明,那真的是 有點繁瑣: 所以,來個簡單的說明: 首先假設Critical node不在Optimal path上

  35. The graph of proof 明顯的vm到vk比 vr到vk長,而根據 Ppq的特性, 也就是vg到vk應該要比 vr到vm長 =>vk才是真正的critical node. 和vr是critical node的假設 相矛盾

  36. Conclusion of Ppq • 既然所有屬於P的路徑,他們的Critical node 都在Ppq之上,那就代表Ppq之上的節點vk , 它們所對應到的γk,以及εs, εt ,涵蓋了所 有可能的MAX(P)。若再加上之前Ps以及Pt , 計算出來的MAX(P)之值域,即可形成A** :

  37. Conclusion of Ppq 由Critical point看去 往γk走去的才可能是MAX(P) (往另外一個方向走較短) 否則MAX(P) 就必定是εs或 εt (在P包含vp的狀況之下)

  38. Generating A** • 有演算法可以在O(n logn)的時間內產生 A**這個值域內的所有值。 • 假如是identical weighted的樹: =>可以在O(n)的時間內完成

  39. Presenter: 吳佳欣 Obtaining the weighted center-median non-dominated set 39

  40. To generate NDO(P*) we compute a planar set W = {(x,y)},satisfying |W|= O(n) and • The set of first coordinate x of W = A** • We’ll minimize SUM(P) under constraint MAX(P)=x

  41. Example 8 (4,2) (3,7) 6 5 4 (2,7) 6 3 2 3 (1,4) 8 (3,3) 7 4 (5,6) 2 4 5 7 3 (3,2) 9 10 0 1 2 (2,9) (1,5) (2,2) (1,9)

  42. Weighted center V1 2.5 5.5 (4,2) (3,7) 6 5 4 (2,7) 6 3 2 3 (1,4) 8 (3,3) 7 4 (5,6) 2 4 5 7 3 (3,2) 9 10 0 1 2 (2,9) (1,5) (2,2) (1,9)

  43. Weighted Path Center V1 2.5 5.5 (4,2) (3,7) 6 5 4 (2,7) 6 3 2 3 (1,4) 8 (3,3) 7 4 (5,6) 2 4 5 7 3 (3,2) 9 10 0 1 2 (2,9) (1,5) (2,2) (1,9)

  44. Critical Value for weighted path center problem γv1=37.5 V1 γ6=22 2.5 5.5 (4,2) (3,7) 6 5 γ5=30 4 (2,7) 6 3 2 γ8=10 3 (1,4) γ4=10 8 (3,3) 7 4 (5,6) 2 4 5 7 3 (3,2) 9 10 0 1 2 (2,9) (1,5) γ0=8 (2,2) (1,9)

  45. Case 1: MAX(P)=δk • If MAX(P)=δk, or • The critical node vk of P (i.e. maxi ukd(vk,vi)=MAX(P)) isthe closest point to weighted 1-center point. • efficient path with critical node vk應該是掛在vk上的一條帶子,往兩個最能減少SUM(P)的方向垂下。

  46. Sum vi vi vj (vi, vj相鄰)

  47. Sum vi vj 取min vb 從vi往vj走可以減少的SUM(P)值

  48. SUM(P) • Let SUM(P) be the minimum of all SUM(P’) of P’ with critical node vk and MAX(P’)=δk • SUMt(), t=0,1,2,3. Can be compute in O(n) • Time: O(Σv|Neighbor(v)|)=O(2n-2)=O(n) • add (δk, SUM(P)) into W 前兩大 SUM3(vk,vb) 其實就是

  49. Result V1 403 371 2.5 5.5 (4,2) (3,7) 6 5 4 (2,7) 6 3 2 595 3 (1,4) 8 (3,3) 547 7 676 4 (5,6) 2 4 5 7 3 622 740 (3,2) 9 10 0 1 2 (2,9) (1,5) (2,2) (1,9) 100 853 740 735

  50. Case 2: MAX(P)=γk or {єs,єt} • 如果MAX(P)= γk, 則P包含v1, critical node是P與path center交集的端點之一。 • 所以我們要查的是掛在Path(vk,vb)上, 從vk與vb垂下的路徑(vk, vb都在path center上, 且一個在Ts, 一個在Tt). 因為vk才是critical node, 所以γk>= γb. • 設path center為Path(vp,vq) • 把P從v1切開,只看Ts這半的話是Path(vi, v1), 從vk開始離開 Path(vp,v1), 以 表示 • 這類的Path中, 在Ts的最小weight sum(另一半另外考慮)

More Related