1 / 79

《水 电 站》

《水 电 站》. 2007 年7月. 第十章 调压室. 第一节 调压室的要求及设置条件. 问题:为什么设置调压室?. 第一节 调压室的要求及设置条件. 在较长的压力引水系统中,为了降低高压管道的水锤压力,满足机组调节保证计算的要求,常在压力引水道与压力管道衔接处建造调压室。 调压室将有压引水系统分成两段:上游段为压力引水道,下游段为压力管道。. 一、调压室的功用. 调压室的功用可归纳为: 反射水锤波 。基本上避免了 ( 或减小 ) 压力管道传来的水锤波进入压力引水道。 减小了水锤压力 ( 压力管道及厂房过水部分 ) 。缩短了压力管道的长度

ronna
Download Presentation

《水 电 站》

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 《水 电 站》 2007年7月

  2. 第十章 调压室 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  3. 第一节 调压室的要求及设置条件 问题:为什么设置调压室? 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  4. 第一节 调压室的要求及设置条件 • 在较长的压力引水系统中,为了降低高压管道的水锤压力,满足机组调节保证计算的要求,常在压力引水道与压力管道衔接处建造调压室。 • 调压室将有压引水系统分成两段:上游段为压力引水道,下游段为压力管道。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  5. 一、调压室的功用 调压室的功用可归纳为: • 反射水锤波。基本上避免了(或减小)压力管道传来的水锤波进入压力引水道。 • 减小了水锤压力(压力管道及厂房过水部分)。缩短了压力管道的长度 • 改善机组在负荷变化时的运行条件。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  6. 二、调压室的基本要求 • 尽量靠近厂房,以缩短压力管道的长度。 • 应有自由水表面和足够的底面积,以保证水锤波的充分反射; • 调压室的工作必须是稳定的。负荷变化时,引水道及调压室水体的波动应该迅速衰减; • 正常运行时,水流经过调压室底部造成的水头损失要小。 • 结构安全可靠,施工简单方便,经济合理。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  7. 三、调压室的设置条件 • 调压室一般尺寸较大,投资较大,工期长,特别是对于低水头电站,调压室的造价可能占整个引水系统造价的相当大的比例。 • 是否设置调压室,应在机组过流系统调节保证计算和机组运行条件分析的基础上,考虑水电站在电力系统中的作用、地形及地质条件、压力管道的布置等因素,进行技术经济比较后加以确定。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  8. 1、上游调压室的设置条件(初步判定) • 用水流加速时间(也称为压力引水道的时间常数)Tw来判断是否设置调压室 • Tw<2~4s时,可不设调压室 • 当水电站单独运行时,或机组在电力系统中所占的比例超过50%时,取小值(2s);当比重小于10%~20%时,可取大值。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  9. 2、下游调压室的设置条件 • 以尾水管内不产生液柱分离为前提,条件为: • Lw—尾水道长度;Vw0—稳定运行时尾水管流速;Vwj—尾水管入口处流速;▽—安装高程。 • 最终通过调节保证计算,当机组丢弃全部负荷时,尾水管内的最大真空度不宜大于8m水柱。但在高海拔地区应作高程修正(见规范)。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  10. 第二节 调压室的工作原理及基本方程 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  11. 一、调压室的工作原理 • 调压室具有较大的容积和自由水面,它将电站因负荷变化而引起的有压系统非恒定流分为性质不同而又互相联系的两部分:压力管道的水锤和“水库—引水道—调压室”的水流波动。 • 丢弃全负荷Q变为0 压力管道中发生水锤水流继续流入调压室调压室水位升高流速逐渐降低到为0 ,此时水位最高反向流动,水位下降水位与水库持平,水流惯性使得继续流向水库,直到V=0 再次向下游流动,循环往复。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  12. 增加负荷,与其相反。 • 经常性的负荷变动水位相应变动(负荷保持不变) 流量相应变化调压室水位波动。 • 管道水锤过程是波的传播,振幅大、变化快,往往在很短时间内即消失。 • 调压室水位波动主要由于水体的往复运动引起,特点是振幅小、变化慢、周期长,往往长达几十秒到几百秒甚至更长时间。 • 调压室水位波动有两种趋势:逐渐衰减和逐渐增大,后者在调压室设计中应该避免。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  13. 研究调压室水位波动的目的: • 确定调压室中可能出现的最高和最低涌波水位及其变化过程,以确定调压室的高度、布置高程和引水道的设计内水压力。 • 根据水位波动稳定的要求,确定调压室所需的最小断面面积。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  14. 二、调压室水位波动的基本方程 1.连续方程 • 水轮机在任何时刻所需流量Q由两部分组成:引水道流来的流量和调压室供给的流量。 2.运动方程(由牛顿第二定律推导) L为引水道长度;hw为引水道的水头损失。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  15. 3.等出力方程 • 微小的水位波动出力变化调速器保持出力不变。 • 当水轮机的水头和流量变化不大时,可以认为机组的效率保持不变。 hw0、hwm0——引水管道、压力管道通过流量为Q0时的水头损失; 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  16. 第三节 调压室的布置方式和类型 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  17. 一、调压室的布置方式 1、上游调压室(引水调压室) 位于厂房上游引水道上。适用:厂房上游有压引水道较长,应用最广泛。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  18. 2、下游调压室(尾水调压室) 位于厂房下游尾水洞上。适用尾水隧洞较长,需设置尾水调压室以减小水击压力,特别是防止丢弃负荷时产生过大的负水击,尾水调压室应尽可能靠近厂房。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  19. (3)上下游双调压室系统 当采用中部地下厂房时,上下游都有较长的压力水道,在厂房上下游均设置调压室。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  20. (4) 上游双调压室系统 • 适用于上游引水道较长情况。靠近厂房的调压室对反射水击波起主导作用,称为主调压室;另一调压室帮助衰减引水系统的波动,称为辅助调压室。 • 水位波动的衰减由两个调压室共同保证,增加一个调压室可以减小另一个调压室的断面。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  21. 二、调压室的基本类型 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  22. 1、简单式调压室 • 特点:断面尺寸形状不变,结构简单,反射水锤波效果好。但水位波动振幅较大,衰减较慢,因而调压室的容积较大;在正常运行时,引水系统与调压室连接处水力损失较大。为了克服上述缺点,可采用有连接管的圆筒式调压室。 • 适用:低水头小流量电站。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  23. 2、阻抗式调压室 • 将圆筒式调压室底部改为阻抗孔口,这种孔口或隔板相当于局部阻力,即为阻抗式调压室。 • 特点:可以有效减小水位波动振幅,加快衰减速度,因而所需调压室的体积小于圆筒式。正常运行时水头损失小。由于阻抗的存在,水锤波不能完全反射,压力引水道中可能受到水击的影响。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  24. 3、双室式调压室 • 特点:双室式调压室是由一个竖井和上下两个储水室组成。丢弃负荷时, 水位迅速上升,当水位达到上室时,其上升速度放慢,从而减小波动振幅。增加负荷时,水位迅速下降到下室中,并由下室补充不足的水量,因此限制了水位的下降。 • 适用:水头较高,要求的稳定断面较小,水库水位变化比较大的水电站。 • 上室的底部高程由水库最高水位控制,下室的顶部高程由水库的死水位控制。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  25. (4) 溢流式调压室 • 由双室式调压室发展而成,顶部设有溢流堰。 • 当丢弃负荷时,调压室的水位迅速上升,达到溢流堰顶后开始溢流,限制了水位的进一步升高,有利于机组的稳定运行,溢出的水量,可以设上室加以储存,也可排至下游。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  26. (5) 差动式调压室 • 由两个直径不同的同心圆筒组成,中间的圆筒直径较小,上有溢流口,称为升管,其底部以阻力孔口与外室相通。 • 特点:外室直径较大,起盛水及保证稳定的作用,其断面积由波动稳定条件控制。所需容积较小,水位波动衰减得也较快。但其构造复杂,施工难度大,造价高。 • 适用:地形和地质条件不允许大断面的中高水头水电站,我国采用较多。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  27. (6) 气垫式或半气垫式调压室 • 在压力隧洞上靠近厂房的位置建造一个大洞室,室中一部分充水,另一部分充满高压空气。利用空气的压缩或膨胀,来减小水位涨落的幅度。 • 适用:表层地质条件不适于建造常规调压室的情况下深埋于地下的引水式地下水电站。目前我国尚未采用。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  28. 气垫式与常规调压室的比较 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  29. 第四节 简单和阻抗调压室水位波动计算 调压室水位波动计算的目的: • 求出最高水位和最低水位及水位变化过程,从而确定调压室的顶部和底部高程及压力管道的进口高程。 • 解析法简单,可直接求出最高和最低水位,但公式推导过程中引入了各种假定,故精度较差,不能求出水位波动的全过程,在初步拟定调压尺寸时采用。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  30. 一、水位波动计算的解析法 (一)、丢弃负荷情况 1.最高水位计算(Zm) 当丢弃全部负荷以后,Q=0, 连续方程变为: fV+FdZ/dt=0 如果考虑阻抗孔口的局部水头损失K,则动力方程变为 Z=hw+K+(L/g)dV/dt 其中 hw=αV2=hw0(V/V0)2, K=K0(Q/Q0)2=K0(V/V0)2 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  31. 1.最高水位计算(Zm) (1) 阻抗式调压室(阻抗系数为η) (2) 圆筒式调压室(η=0) 式中 xm的符号在静水位以上为负,以下为正。 为“引水道-调压室”系统特性系数。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  32. 2.波动第二振幅(Z2) • 丢弃负荷后,调压室中水位先升高到最高水位Zm。随后又降到最低幅值Z2,Z2称为第二振幅。 • 对于圆筒式调压室,η=0时: • 式中 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  33. (二)、增加负荷情况 • 当上游为最低水位时,由部分负荷增加至最大负荷时所产生的水位波动的最大降低值,由微分方程不能进行直接积分,只能在某些假定下求近似解。 • 设水电站的流量由mQ0增加到Q0(m<1,称为负荷系数)。对圆筒调压室,按照Vogt公式计算Zmin: Zmin/hw0为无因次系数,表示“引水道—调压室”系统特性。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  34. 二、水位波动计算的图解法 1、基本原理 • 用差分代替基本方程中的微分,则连续方程和动力方程改写为: 并进一步改写为: ΔZ=A-αV,ΔV=β(Z-hw) 式中: 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  35. 当Δt选定以后,A, α, β都是常数。 • 计算基本假定: • 在时段Δt中,调压室中的水位Z和引水道中的流速V保持不变。 • 在时段末,水位Z和流速V发生突变。 • 其精度与Δt的大小有关,一般取:Δt =T/(25~30),T位波动周期, 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  36. 2、简单调压室丢弃负荷的图解计算 • 确定坐标系统:横轴为V,向左为正;竖轴为Z,向下为正。 • 作辅助线: • 水头损失辅助线hw=f(V) • 惯性线: ΔV=β(Z-hw) • 水位-流量关系曲线: ΔZ=A-αV • 图解计算:见教材(另一执行文件) 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  37. 3、简单调压室增加负荷的图解计算 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  38. 4、阻抗调压室的图解计算 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  39. 第五节 双室式、溢流式、差动式调压室的水位波动计算 一、双室式和溢流式 • 适用于水头较高、水库工作深度较大的情况。 • 溢流式常和双室式结合使用,以改善双室式的工作条件。 • 其上室底部高程一般在最高静水位以上,下室顶部在最低静水位以下,底部在最低涌波水位以下。下室的顶部反坡不小于1.5%,当水位上升时方便空气溢出。 • 下室体积、高程、形状等的设计要特别仔细,不应仅仅进行计算,必要时进行模型试验。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  40. 理想化调压室:竖井断面无限小,上室容积集中于水位最大升高Zmax处,下室容积集中于水位最大降低Zmin处。理想化调压室:竖井断面无限小,上室容积集中于水位最大升高Zmax处,下室容积集中于水位最大降低Zmin处。 • 计算假定: • 上室底部高程与上游最高静水位相同 • 上室中设溢流堰 • 堰顶高出静水位ZB。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  41. 丢弃负荷时的最大水位升高: Zm=ZB+Δh;Δh=(QB/MB)2/3 式中 Δh为溢流堰顶过最大流量QB时的水层厚度;M为溢流堰的流量系数,与溢流堰形式有关;B为溢流堰顶长度;QB为丢弃负荷时堰顶最大溢流量。 • 一般QB会稍微小于Q0,因为此时引水道中的流速已经减慢,所以设: QB=yQ0,其中y由前面的微分方程通解求出。 • 如果忽略竖井的阻抗,即η=0,则通解变为: 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  42. 上式中的X=Zm/S=(ZB+Δh)/S≈ZB/S。 • 求出y以后,以yQ0代替QB,重新计算Δh • 再由 Zm=ZB+Δh计算Zm。 • 如果要提高计算精度,将求出的X和Zm代入上面的公式重复计算一次,即 但要注意,最高水位时X以负值代入。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  43. 上、下室容积设计 • 上室容积: • 如果上室无溢流堰,则上室容积计算公式为: • 当电站流量从mQ0增加Q0时,下室容积计算公式为: 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  44. 注意:上室的体积是指在最高涌波水位以下,下室体积指最低涌波水位之上。注意:上室的体积是指在最高涌波水位以下,下室体积指最低涌波水位之上。 • 设计时首先根据上面的公式初步确定调压室的尺寸,再用逐步积分法校核。 • 双室式调压室水位波动的图解方法与简单式调压室基本相同,但要注意一些细节问题: • 水位不同时,所采用的断面积也不同 • 水位在竖井内时,其变化很快,计算时段Δt要选小些,而在上室和下室内时,Δt可选大些。 • 竖井、上室和下室各段的ΔZ和ΔV辅助曲线有不同的斜率。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  45. 二、差动式调压室 丢弃负荷时的水位变化过程 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  46. 差动式调压室的水位波动 • 差动式调压室的最高和最低水位同大井面积、升管面积、阻抗孔口的大小、流量系数、溢流口高程等因素有关。 • 在设计调压室时,要考虑上述参数的不同组合及其相互影响与制约,如:阻抗孔口太小,则升管停止溢流以后,大井水位仍未达到升管顶部,不能发挥大井的作用。 • 理想差动式调压室:升管与大井具有相同的最高水位和相同的最低水位。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  47. (一)、增加负荷 流量:从 mQ0  Q0 假定:升管水位下降很快,当其降到最低水位Zmin时,大井水位和引水道的流量还未来得及发生变化。 计算公式: Fcm——升管的断面积;Fp——大井断面积 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  48. (二) 丢弃负荷 • 主要是确定调压室各部分的尺寸,如大井容积等,计算公式见教材。 • 设计或计算中的一些系数必要时需要由模型试验确定。 • 差动式调压室按以上公式初步确定以后,再用逐步积分法或图解方法确定调压室水位波动的过程。如果结果与理想差动式调压室的状态相差较多,需要重新设计。 • 差动式调压室水位波动的逐步积分法和图解方法可参考有关文献。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  49. 第六节 引水道-调压室系统的工作稳定性 • 调压室在运行过程中,可将水位波动分为两种类型: • 大波动,即电站发生大幅度的负荷变化,调压室中将发生较大的水位波动; • 小波动,即电站微小的负荷变化所造成的水位小幅度波动。 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

  50. 一、小波动稳定性 • 1910年在德国汉堡水电站上曾发生过调压室波动的不稳定现象,托马首先进行了研究。 • 基本假定: • 波动为无限小,以使微分方程线性化,从而容易得出解析解答; • 调速器能绝对保证水轮机出力为一常数; • 电站单独运行,机组效率保持不变; • 调压室与引水道直接连接,因而可不考虑调压室底部流速水头的影响 浙江水专国家精品课程《水电站》http://jpkc.zjwchc.com/sdz

More Related