1 / 6

Peptide-Peptide interactions in the Liwo united residue model.

Peptide-Peptide interactions in the Liwo united residue model. Ref. A: Calculation of protein backbone geometry from α -carbon coordinates based on peptide-group dipole alignment, A. Liwo, M.R. Pincus, R.J. Wawak, S. Rackovsky, and H.A. Scheraga, Protein Science 2, 1697-1714 (1993).

santos
Download Presentation

Peptide-Peptide interactions in the Liwo united residue model.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Peptide-Peptide interactions in the Liwo united residue model. Ref. A: Calculation of protein backbone geometry from α-carbon coordinates based on peptide-group dipole alignment, A. Liwo, M.R. Pincus, R.J. Wawak, S. Rackovsky, and H.A. Scheraga, Protein Science 2, 1697-1714 (1993). Ref. B: Prediction of protein conformation on the basis of a search for compact structures: Test of avian pancreatic polypeptide, M.R. Pincus, R.J. Wawak, S. Rackovsky, and H.A. Scheraga, Protein Science 2, 1615-1731 (1993).

  2. Ref. A, Fig. 1.

  3. Subroutine of energy_p_new.F C-------------------------------------------------------------------------- subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4) . . ees=0.0D0 evdw1=0.0D0 eel_loc=0.0d0 eello_turn3=0.0d0 eello_turn4=0.0d0 ind=0 do i=1,nres num_cont_hb(i)=0 enddo do i=1,nres gel_loc_loc(i)=0.0d0 gcorr_loc(i)=0.0d0 enddo do i=iatel_s,iatel_e  The Calpha_i loop. dxi=dc(1,i)  dc = Ri+1-Ri dyi=dc(2,i) dzi=dc(3,i)

  4. dx_normi=dc_norm(1,i)  dc_norm is thee unit vector V which is ri+1- ri. dy_normi=dc_norm(2,i) dz_normi=dc_norm(3,i) xmedi=c(1,i)+0.5d0*dxi  The p-site ri+1/2(ri+1-ri) ymedi=c(2,i)+0.5d0*dyi zmedi=c(3,i)+0.5d0*dzi num_conti=0 c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i) do j=ielstart(i),ielend(i)  The loop over calpha J ind=ind+1 iteli=itel(i) itelj=itel(j) if (j.eq.i+2 .and. itelj.eq.2) iteli=2 aaa=app(iteli,itelj)  The LJ constant for 1/r**12 bbb=bpp(iteli,itelj)  van der Waals for 1/r**6 C Diagnostics only!!! c aaa=0.0D0 c bbb=0.0D0 c ael6i=0.0D0 c ael3i=0.0D0 C End diagnostics ael6i=ael6(iteli,itelj)  The dipole electric constant for the 1/r**6 ael3i=ael3(iteli,itelj)  ditto for the 1/r**3

  5. dxj=dc(1,j) dyj=dc(2,j) dzj=dc(3,j) dx_normj=dc_norm(1,j) dy_normj=dc_norm(2,j) dz_normj=dc_norm(3,j) xj=c(1,j)+0.5D0*dxj-xmedi  x component of rij yj=c(2,j)+0.5D0*dyj-ymedi zj=c(3,j)+0.5D0*dzj-zmedi rij=xj*xj+yj*yj+zj*zj  |rij|^2 rrmij=1.0D0/rij rij=dsqrt(rij) rmij=1.0D0/rij r3ij=rrmij*rmij  1/r**3 r6ij=r3ij*r3ij  1/r**6 Next is cosalpha, cosbeta, cosgamma cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij fac=cosa-3.0D0*cosb*cosg ev1=aaa*r6ij*r6ij c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions if (j.eq.i+2) ev1=scal_el*ev1

  6. ev2=bbb*r6ij fac3=ael6i*r6ij fac4=ael3i*r3ij evdwij=ev1+ev2 el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)) el2=fac4*fac eesij=el1+el2 C 12/26/95 - for the evaluation of multi-body H-bonding interactions THIS IS THE SCARY PART. ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg) ees=ees+eesij evdw1=evdw1+evdwij cd write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)') cd & iteli,i,itelj,j,aaa,bbb,ael6i,ael3i, cd & 1.0D0/dsqrt(rrmij),evdwij,eesij, cd & xmedi,ymedi,zmedi,xj,yj,zj if (energy_dec) then write (iout,'(a6,2i,0pf7.3)') 'evdw1',i,j,evdwij write (iout,'(a6,2i,0pf7.3)') 'ees',i,j,eesij endif C C Calculate contributions to the Cartesian gradient.

More Related