1 / 20

Intermediate Value Theorem

Intermediate Value Theorem. Alex Karassev. River and Road. River and Road. Definitions. A solution of equation is also called a root of equation A number c such that f(c)=0 is called a root of function f. Intermediate Value Theorem (IVT). f is continuous on [a,b]

Download Presentation

Intermediate Value Theorem

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Intermediate Value Theorem Alex Karassev

  2. River and Road

  3. River and Road

  4. Definitions • A solution of equation is also calledarootof equation • A number c such that f(c)=0 is calledarootof function f

  5. Intermediate Value Theorem (IVT) • f is continuous on [a,b] • N is a number between f(a) and f(b) • i.e f(a) ≤ N ≤ f(b) or f(b) ≤ N ≤ f(a) • then there exists at least one c in [a,b] s.t. f(c) = N y y = f(x) f(b) N f(a) x c a b

  6. Intermediate Value Theorem (IVT) • f is continuous on [a,b] • N is a number between f(a) and f(b) • i.e f(a) ≤ N ≤ f(b) or f(b) ≤ N ≤ f(a) • then there exists at least one c in [a,b] s.t. f(c) = N y y = f(x) f(b) N f(a) x c3 c1 c2 a b

  7. Equivalent statement of IVT • f is continuous on [a,b] • N is a number between f(a) and f(b), i.e f(a) ≤ N ≤ f(b) or f(b) ≤ N ≤ f(a) • then f(a) – N ≤ N – N ≤ f(b) – N or f(b) – N ≤ N – N ≤ f(a) – N • so f(a) – N ≤ 0 ≤ f(b) – N or f(b) – N ≤ 0 ≤ f(a) – N • Instead of f(x) we can consider g(x) = f(x) – N • so g(a) ≤ 0 ≤ g(b) or g(b) ≤ 0 ≤ g(a) • There exists at least one c in [a,b] such that g(c) = 0

  8. Equivalent statement of IVT • f is continuous on [a,b] • f(a) and f(b) have opposite signs • i.e f(a) ≤ 0 ≤ f(b) or f(b) ≤ 0 ≤ f(a) • then there exists at least one c in [a,b] s.t. f(c) = 0 y y = f(x) f(b) c x a N = 0 b f(a)

  9. y 1 x -1 0 1 -1 Continuity is important! • Let f(x) = 1/x • Let a = -1 and b = 1 • f(-1) = -1, f(1) = 1 • However, there is no c such that f(c) = 1/c =0

  10. Important remarks • IVT can be used to prove existence of a root of equation • It cannot be used to find exact value of the root!

  11. Example 1 • Prove that equation x = 3 – x5 has a solution (root) • Remarks • Do not try to solve the equation! (it is impossible to find exact solution) • Use IVTto prove that solution exists

  12. Steps to prove that x = 3 – x5 has a solution • Write equation in the form f(x) = 0 • x5 + x – 3 = 0 so f(x) = x5 + x – 3 • Check that the condition of IVT is satisfied, i.e. that f(x) is continuous • f(x) = x5 + x – 3 is a polynomial, so it is continuous on (-∞, ∞) • Find a and b such that f(a) and f(b) are of opposite signs, i.e. show that f(x) changes sign (hint: try some integers or some numbers at which it is easy to compute f) • Try a=0: f(0) = 05 + 0 – 3 = -3 < 0 • Now we need to find b such that f(b) >0 • Try b=1: f(1) = 15 + 1 – 3 = -1 < 0 does not work • Try b=2: f(2) = 25 + 2 – 3 =31 >0 works! • Use IVT to show that root exists in [a,b] • So a = 0, b = 2, f(0) <0, f(2) >0 and therefore there exists c in [0,2] such that f(c)=0, which means that the equation has a solution

  13. x = 3 – x5⇔ x5 + x – 3 = 0 y 31 x 0 2 N = 0 c (root) -3

  14. Example 2 • Find approximate solution of the equationx = 3 – x5

  15. Idea: method of bisections • Use the IVT to find an interval [a,b] that contains a root • Find the midpoint of an interval that contains root: midpoint = m = (a+b)/2 • Compute the value of the function in the midpoint • If f(a) and f (m) are of opposite signs, switch to [a,m] (since it contains root by the IVT),otherwise switch to [m,b] • Repeat the procedure until the length of interval is sufficiently small

  16. f(x) = x5 + x – 3 = 0 We already know that [0,2] contains root f(x)≈ > 0 < 0 31 -3 -1 Midpoint = (0+2)/2 = 1 0 2 x

  17. f(x) = x5 + x – 3 = 0 f(x)≈ 31 6.1 -3 -1 1.5 0 2 1 x Midpoint = (1+2)/2 = 1.5

  18. f(x) = x5 + x – 3 = 0 f(x)≈ 31 6.1 -3 1.3 -1 0 2 1.5 1 1.25 x Midpoint = (1+1.5)/2 = 1.25

  19. f(x)≈ f(x) = x5 + x – 3 = 0 31 6.1 -3 1.3 -.07 -1 1.25 1.125 1 0 2 1.5 Midpoint = (1 + 1.25)/2 = 1.125 x • By the IVT, interval [1.125, 1.25] contains root • Length of the interval: 1.25 – 1.125 = 0.125 = 2 / 16 = = the length of the original interval / 24 • 24 appears since we divided 4 times • Both 1.25 and 1.125 are within 0.125 from the root! • Since f(1.125) ≈ -.07, choose c ≈ 1.125 • Computer gives c ≈ 1.13299617282...

  20. Exercise • Prove that the equationsin x = 1 – x2has at least two solutions Hint: Write the equation in the form f(x) = 0 and find three numbers x1, x2, x3, such that f(x1) and f(x2) have opposite signs AND f(x2) and f(x3) haveopposite signs. Then by the IVT the interval [ x1, x2 ] contains a root ANDthe interval [ x2, x3 ] contains a root.

More Related