1 / 41

Principles of Molecular Disease : Lessons from the Hemoglobinopathies

Principles of Molecular Disease : Lessons from the Hemoglobinopathies. The effect of mutations on protein function. mutations resulting in a loss of function of the protein mutations resulting in a gain of function of the protein

sumana
Download Presentation

Principles of Molecular Disease : Lessons from the Hemoglobinopathies

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Principles of MolecularDisease: Lessonsfrom the Hemoglobinopathies PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  2. The effect of mutationsonproteinfunction • mutationsresulting in a loss of function of the protein • mutationsresulting in a gain of function of the protein • mutationsresulting in a novelpropertyby the protein • mutationsresulting in gene expression at the wrong time or place PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  3. Loss-of-functionmutations • deletion of the entire gene (and eventuallyalsocontiguousgenes) • examples: microdeletionsyndromes, monosomies (Turner), a-thalassemias • chromosomalrearrangements • nonsensemutationsor frameshift mutationsresulting in a premature stop codon • missensemutationsmayalsoabolishproteinfunction Severity of disease ~ amount of function lost PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  4. Gain-of-functionmutations = mutationsthatenhanceoneor more of the normalfunctionsof the protein • mutationsthatenhanceonenormalfunction of the protein • f.e.: the G380R mutation in FGFR3causingachondroplasia • mutationsthatincrease the production of a normalprotein in itsnormal environment • f.e.: trisomy 21 (Down syndrome) • duplication of PMP22 in Charcot-Marie-Toothdisease type 1A • chromosomalduplications in cancer PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  5. Novelpropertymutations = mutationsthatgive a novelproperty to the protein without necessarilyalteringits normalfunction these mutations are rather infrequent since most amino acid substitutions are either neutralordetrimental to the functionorstability of the protein a classic example is sicklecelldisease PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  6. Mutationsassociatedwith heterochronicorectopic gene expression • = mutationsthat alter the regulatoryregions of a gene to causeinappropriate • expression, at anabnormal time or place • Examples: • oncogenemutations in cancer • hereditarypersistence of fetalhemoglobin (continuedexpression of the g-globin gene) PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  7. Genetic Disorders of the Central Nervous System – International Module on Pediatric Rehabilitation G Mortier – Department Medical Genetics – Ghent University Hospital

  8. PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  9. The Hemoglobinopathies • most commonsingle-gene disorders in humans • more than 5% of the world’spopulation is carrier of anabnormalglobin gene PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  10. The Hemoglobins • hemoglobin (Hb) is the oxygen carrier in vertebrate red bloodcells • the Hb A molecule contains 4 subunits: 2 a-chains and 2 b-chains • each subunit is composed of : • - a polypeptidechain (globin) • - a prostheticgroup (heme) which is aniron-containing pigment that • combines withoxygen • globinstructurehighlyconserved PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  11. PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  12. The Hemoglobins • hemoglobin (Hb) is the oxygen carrier in vertebrate red bloodcells • the Hb A molecule contains 4 subunits: 2 a-chains and 2 b-chains • each subunit is composed of : • - a polypeptidechain (globin) • - a prostheticgroup (heme) which is aniron-containing pigment that • combines withoxygen • globinstructurehighlyconserved • Hb A (adulthemoglobin): a2 b2 • and fiveotherhemoglobins PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  13. identical chromosome 16 differonly in 10/146 AA chromosome 11 In adultlife: >97% HbA 2% HbA2 <1% HbF commonancestral gene PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  14. Globinswitching PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  15. 6 kb Chr 11 LCR e Gg Ag yb d b • expression of b-globin gene controlledbynearbypromoter and LCR • locuscontrolregion (LCR): requiredfor the expression of all the genes • in the b-globin cluster • deletions of LCR results in egdb- thalassemia PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  16. Threebroadgroups of mutationsthat affect hemoglobin mutationsthat alter the structure of the globinprotein mutationsthatdecrease the synthesis of oneor more globinchains mutationsthatimpair the globindevelopmentalswitching PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  17. 1. HemoglobinStructuralVariants • usuallydue to point mutations in one of the globingenes • more than 400 abnormalhemoglobinvariants have been described • onlyabout 50% are clinically significant • three classes: • - mutantsthatcausehemolyticanemia • - mutantsthat alter oxygen transport • - mutantsthatreduce the abundance of the globinchain (thalassemias) PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  18. HemoglobinStructuralVariantsthatcauseHemolyticAnemia • Pathogenesis • the mutant makes the Hbtetramerunstable • loss-of-functionmutations • f.e.: HbHammersmith (b-chain Phe42Ser mutation) • the mutant gives the globinchainanunusualrigidstructure • novelpropertymutations • f.e.: sicklecellglobin; HbC PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  19. SickleCellDisease • sicklecellhemoglobin (HbS) was the firstabnormalHbdetected • HbS: singenucleotidesubstitutionresults in Glu6Val mutation in b-chain • sicklecelldisease is due to homozygosityfor the Glu6Val mutation (AR condition) • sicklecelltraitrefers to the heterozygous state • common in equatorialAfrica; 1/600 AfricanAmericans is bornwith the disease • about 8% of AfricanAmericans are heterozygous • heterozygotes are protectedagainst malaria PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  20. SickleCellDisease • HbS has a normalability to bind oxygen in normalcircumstances • in deoxygenatedbloodHbS is lesssoluble as normalHb • in conditions of low oxygentension, the HbS molecules aggregatewhichdistort • the RBC to a sickleshape. These misshapenerythrocytes are lessdeformablethan • normal and cannotsqueeze in single file throughcapillaries, therebyblockingblood • flow and causinglocalischemia PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  21. 1. HemoglobinStructuralVariants • usuallydue to point mutations in one of the globingenes • more than 400 abnormalhemoglobinvariants have been described • onlyabout 50% are clinically significant • three classes: • - mutantsthatcausehemolyticanemia • - mutantsthat alter oxygen transport • - mutantsthatreduce the abundance of the globinchain (thalassemias) PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  22. HemoglobinStructuralVariantsthat alter oxygen transport • these mutations have littleorno effect onhemoglobinstability • mutations in the region of the heme pocket will affect the heme-globin bond • in a waythatmakes the ironresistant to the enzymemethemoglobinreductase. • The result is accumulation of methemoglobin in the bloodwithcyanosis as a • consequence. • f.e. HbHyde Park (b-chain His92Tyr mutation) • heterozygotes are cyanoticbutusuallyasymptomatic. The homozygous state • is presumably lethal. PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  23. 2. HemoglobinSynthesis Disorders (The Thalassemias) • collectively the most commonhumansingle-gene disorders! • carriers have anprotectiveadvantageagainst malaria • > qalassa(sea): firstdiscovered in persons of Mediterraneanorigin • imbalance in the normal ratio of a : b chains • - reduction in synthesis of globinchains • - instability of globinchains • excess of normalchainswilldamage the RBCs (hemolyticanemia) • defect in Hbsynthesiswillcausehypochromic, microcyticanemia PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  24. The a - Thalassemias • decreased to absent a-globinproduction • affect the formation of bothfetal and adultHb • in the absence of a-globins: • - HbBart’s: g4 • - Hb H: b4 • hydropsfetalis in severeforms(due to severehypoxia) • anemia in mild forms(precipitation of Hbinclusions in RBCsdamage in spleen destruction) HomotetramericHbthat are ineffectiveoxygen carriers PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  25. The a - Thalassemias • most commonlydue to deletion of the a-globingenes Misalignmentwith PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  26. The a - Thalassemias clinicalconditionnumber of functionala-globin gene a-chain a-genesgenotypeproduction Normal 4 aa/aa 100% Silent carrier 3 aa/a- 75% a-thalassemiatrait 2 a-/a- or 50% (mild anemia, microcytosis)aa/- - * Hb H (b4) disease 1 a-/- - 25% (moderatelyseverehemolyticanemia) Hydropsfetalis (HbBart’sg4) 0 - -/- - 0% * Carriers frequent in SoutheastAsia PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  27. The a - Thalassemias • most commonlydue to deletion of the a-globingenes • otherformsrather rare: • - formdue to the ZF deletion(namedafterindividual ZF) • - the ATR-X syndrome PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  28. a – Thalassemiadue to the ZF deletion transcribedfrom the opposite strand a2-gene is silenceddue to the generation of antisenseRNAsfrom the truncated LUC7L gene wild-typeantisensetranscripts do alsoexist and play a role in regulation of gene expression (f.e. X inactivation)! PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  29. The ATR-X syndrome • association of mental retardation and a-thalassemia • due to mutations in the X-linked ATRX gene • ATRX codes for a chromatin remodelingprotein • the ATRX proteinfunctions in trans to activate the expression of • the a-globingenes and othergenes important fornormalbrainfunction • partialloss-of-functionmutationsresult in modest reduction of a-globinsynthesis • somatic (more severe) mutations in ATRX cause the • a-thalassemiamyelodysplasiasyndrome(ifgermline: hydropsfetalis!) PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  30. The ATR-X syndrome • X-linkedform of syndromic mental retardation • prevalence: 1-9/1.000.000 ? • 95% severe to profound mental retardation • usuallyno speech • 30% seizures; 75% microcephaly (postnatalonset) • spasticparaparesismaybe present • facialdysmorphism • 80% genitalabnormalities (undescended testes to ambiguousgenitalia) • 65% short stature; 20% heart defects • Hb H inclusions in 90% present, usually mild anemia • (Hb H inclusionsonlyappearafter 30%-40% reduction in a-globinsynthesis) PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  31. The ATR-X syndrome Erythrocytesafterincubation in briljant cresyl blue. Hb H inclusions in threecellsgivethem a golf balllikeappearance From Gibbons R. Orphanet Journal of Rare Diseases 2006;1:15 PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  32. The b - Thalassemias • decreasedb-globinproduction • onsetnotapparentuntil a few monthsafterbirth • samepathophysiology as in a-thalassemias: precipitation of the excessa-chains • results in hypochromic, microcyticanemia • increasedlevels of HbA2 (a2d2) and HbF(a2g2) • usuallydue to single-base pair substitutions (ratherthandeletions) • personswithtwoabnormalalleles are frequentlycompoundheterozygous • twob-thalassemiaalleles: usuallythalassemia major (severeanemia) • oneb-thalassemiaallele: thalassemia minor (mild anemia, noclinic) • simple versus complex b-thalassemia PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  33. of the 3’ end of the gene >> PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  34. Point mutationsthatcauseb-thalassemia are distributedthroughout the gene. They affect virtuallyeveryprocessrequiredfor the production of normalb-globin. PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  35. Posttranscriptionalmodifications of mRNA PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  36. RNA splicingmutations in b– Thalassemias (1) PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  37. RNA splicingmutations in b– Thalassemias (2) PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  38. RNA splicingmutations in b– Thalassemias (3) Very frequent in SoutheastAsia Hb E: example of a single nucleotidesubstitutionthataffects both RNA splicing and the coding sequence PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  39. Complex b – Thalassemias (egdb)° thalassemia (illustratesimportance of LCR) (db)° thalassemia (Agdb)° thalassemia Hereditarypersistence of fetalhemoglobin PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  40. 3. GlobinDevelopmentalSwitching Disorders • hereditarypersistence of fetalhemoglobin • group of clinicallybenignconditions • production of higherlevels of Hb F than is seen in (db)° thalassemia • theyimpair the perinatal switch fromg-globin to b-globinsynthesis PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

  41. Fig 12.1 PostgraduatecourseHumanGenetics – 06/12/08 Geert Mortier, MD, PhD– Center forMedicalGenetics – GhentUniversityHospital

More Related