1 / 18

Aula Teórica 2

Aula Teórica 2. Difusividade e Fluxo Difusivo. Pressão, força de pressão, energia de pressão. O que é a velocidade ?. A velocidade num escoamento é o caudal volúmico por unidade de área. Velocidade “zero” significa deslocamento médio das moléculas nulo.

taber
Download Presentation

Aula Teórica 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Aula Teórica 2 Difusividade e Fluxo Difusivo. Pressão, força de pressão, energia de pressão.

  2. O que é a velocidade ? • A velocidade num escoamento é o caudal volúmico por unidade de área. • Velocidade “zero” significa deslocamento médio das moléculas nulo. • Cada molécula (num gás) tem a sua velocidade e cada grupo de moléculas (num líquido) tem a sua velocidade e não são nulos... • O movimento não descrito pela velocidade é contabilizado na difusividade.

  3. (c) (b) (a) (c) (b) (a) Difusão As figuras abaixo representam dois fluidos, um branco e um preto). A figura superior representa as moléculas e a inferior a vista macroscópica. Na situação a) existe um diafragma a separá-los. Quando se retira o diafragma inicia-se a mistura b). Quando o gradiente é nulo a probabilidade de uma molécula preta passar para a esquerda é igual à de uma outra passar para a direita e o fluxo resultante é nulo.

  4. Difusividade Quando retirarmos o diafragma as moléculas passam de um lado para o outro. O saldo do fluxo é o fluxo difusivo. O fluxo de moléculas de um tipo para cada um dos lados é proporcional à concentração e à velocidade de cada molécula. O saldo é dado por: Mas, A difusividade é o produto do comprimento do deslocamento pela diferença entre a velocidade de uma porção de fluido e a usada na advecção. Ver texto sobre propriedades dos fluidos e do campo de velocidades

  5. Difusividade • A difusividade é definida como: • Onde é a velocidade não resolvida na nossa definição de velocidade (browniana no caso do escoamento laminar e flutuação turbulenta no caso do escoamento turbulento) e é a distância percorrida pela porção de fluido que se desloca a essa velocidade, até adquirir uma nova velocidade por ter chocado com outra porção de fluido (no mínimo uma molécula). • A difusividade tem sempre dimensões:

  6. Fluxo Difusivo • É o fluxo produzido pela difusividade: • O fluxo difusivo através de uma superfície é no sentido contrário da componente do gradiente perpendicular a essa superfície. • O fluxo difusivo é nulo quando o gradiente da propriedade é nulo.

  7. E no caso da quantidade de movimento? • Se uma porção de fluido (e.g. molécula) desce da zona de maior velocidade para a de menor, vai aumentar a velocidade nessa zona. Nesse caso uma porção igual de fluido subirá e irá reduzir a velocidade em cima. • Na presença velocidade aleatória e de gradiente de velocidades, o fluido mais rápido arrasta o mais lento. De acordo com a Lei de Newton, a uma aceleração corresponde uma força, que neste caso é uma força de atrito. • À difusividade de quantidade de movimento chama-se viscosidade, que pode também ser vista como a relação entre a tensão de corte (atrito) e a taxa de deformação de um elemento de fluido (gradiente de velocidade). • Escoamento com gradiente de velocidade.

  8. Fluxo difusivo de Quantidade de Movimento e Tensão de Corte • O movimento aleatório não representado pela velocidade origina um fluxo de quantidade de movimento que é sentido como uma força (força de corte). Esta força aumenta com o gradiente de velocidade e depende da quantidade de massa que é necessário acelerar e da taxa a que a massa se move. τ(y+Δy) τ(y) Nesta equação as unidades da viscosidade (dinâmica) são (força/área)/segundo = >N/m2/s, Poiseuille no SI)

  9. Viscosidade A viscosidade cinemática tem dimensões m2/s. A dinâmica tem dimensões mais complicadas porque a difusão de quantidade de movimento é a difusividade de velocidade, multiplicada pela massa.... ΔuΔt Taxa de deformação e gradiente de velocidades Δy Por isto se diz que a viscosidade é a relação entre a tensão e a taxa de deformação.

  10. Viscosidade da água e do ar • A Água é cerca de 100 vezes mais viscosa do que o Ar. • Mas a Viscosidade cinemática do Ar é 10 vezes maior do que a da Água. • Qual é que é mais fácil de parar?

  11. E o que é a pressão? • É uma medida da força que resulta dos choques entre as moléculas de um fluido e as moléculas vizinhas (moléculas do fluido ou paredes do recipiente). Quando o volume ocupado por um gás aumenta, a probabilidade de choque por unidade de área baixa e a pressão baixa.

  12. Porque aumenta com a profundidade de um fluido? • Porque a força exercida por uma molécula é resultado da sua quantidade de movimento, mas também do seu peso. Quando desce converte energia potencial em cinética e quando sobre perde. • A força exercida pela molécula de cima sobre a de baixo é maior do que a exercida pela de baixo sobre a de cima.

  13. Porque baixa a pressão quando a velocidade do fluido aumenta? • A força resultante do choque de duas moléculas depende das diferenças de velocidades. Se a velocidade média for nula só depende da energia cinética associada à temperatura. • Se tivermos escoamento a força resultante do choque é proporcional à quantidade de movimento calculada a partir da velocidade browniana da molécula subtraída da diferença de velocidades entre as moléculas. • As moléculas da linha da frente têm velocidade superior à das da linha de trás. Como consequência a quantidade de movimento associada ao choque baixa e por isso a pressão baixa. • Se considerarmos uma terceira linha de moléculas mais à frente, com maior velocidade (gradiente de velocidade positivo) a pressão é ainda menor. Como consequência as moléculas da linha do meio aumentam de velocidade. • Poderemos por isso dizer que é o gradiente de pressão que determina a aceleração do fluido.

  14. Aceleração e Gradiente de pressão • Quando temos gradiente de pressão produzimos aceleração. Se registarmos uma aceleração então estamos perante um sistema onde a resultante das forças é diferente de zero. • A Mecânica dos Fluidos baseia-se na Lei de Newton que relaciona forças e acelerações e na lei de conservação da massa.

  15. Forças e acelerações • Quando a aceleração é elevada, a força também é!!! • Porque voa um avião? Patm Patm

  16. Porque é que a pressão só baixa se houver escoamento? i.e. Não basta ter uma contracção para produzir a diferença de pressão! • Se tivermos uma contracção sem escoamento a pressão é atmosférica em todos os pontos. • Para criarmos um gradiente de pressão temos que criar uma onda de choques entre moléculas e por isso temos que ter uma fase transiente. • Temos duas possibilidades: • Removemos moléculas na saída baixando a pressão do lado de fora e fazendo com que os choques das moléculas no interior sejam mais intensos do que os que gerados pelas moléculas do lado de fora, resultando daqui um movimento a partir da saída e uma depressão que se propaga para o interior ou, • Aumentamos a pressão do dado de dentro (empurrando mais moléculas para dentro da conduta) gerando uma onda exactamente no sentido contrário. • Este processo é descrito em termos macroscópicos pela lei de Newton, que estabelece a relação entre força e aceleração. Se conhecermos a força poderemos calcular a aceleração e vice-versa. • A Equação de transporte de quantidade de movimento não é mais do que a lei de Newton aplicada a uma massa que tem a capacidade de fluir, gerando deformação do fluido e por isso forças de corte.

  17. Energia de Pressão • A Pressão é definida como “Força/Área”. • O Trabalho é a “Força*Deslocamento da força” • O Volume é “Área * Comprimento” • Se aplicarmos uma força sobre um fluido que se desloca produzimos um trabalho que é a força vezes o seu deslocamento (velocidade do fluido * tempo). • Então: • Energia=Força * (velocidade*tempo) = (Pressão* Área)* (velocidade*tempo) =Pressão*Volume • Então Pressão é Energia / Volume. • A Pressão mede o trabalho necessário para colocar a unidade de volume de fluido àquela pressão.

  18. Sumário • A difusividade é a consequência do conceito de meio contínuo e de velocidade do fluido. • Associado à difusividade está associado um fluxo difusivo proporcional ao simétrico do gradiente. • No caso da quantidade de movimento a difusividade é designada por viscosidade e relaciona tensão (fluxo difusivo) e taxa de deformação (gradiente de velocidades). • A pressão resulta dos choques entre moléculas. A aceleração resulta do gradiente de pressão. • A pressão pode também ser vista como energia por unidade de volume. Efectivamente é a energia necessária para colocar a unidade de volume de fluido àquela pressão.

More Related