1 / 25

Proving Analytic Inequalities Avi Wigderson IAS, Princeton

Proving Analytic Inequalities Avi Wigderson IAS, Princeton. Math and Computation New book on my website. Past 2 lectures Alternate minimization & Symbolic matrices: analytic algorithms for algebraic problems . Polynomial identities: algebraic tools for understanding analytic algorithms .

toneyl
Download Presentation

Proving Analytic Inequalities Avi Wigderson IAS, Princeton

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Proving Analytic Inequalities Avi Wigderson IAS, Princeton Math and Computation New book on my website

  2. Past 2 lectures Alternate minimization & Symbolic matrices: analytic algorithms for algebraic problems. Polynomial identities: algebraic tools for understanding analytic algorithms. Today Applications: Analysis & Optimization

  3. ∫∏j fj≤C ∏j |fj|pj Propaganda:special cases & extensions Cauchy-Schwarz,HolderPrecopa-Leindler Loomis-WhitneyNelson Hypercontractive Young’s convolution Brunn-Minkowski Lieb’s Non-commutativeBL Barthe ReverseBL Bennett-Bez NonlinearBL Quantitative Helly Analysis, Geometry, Probability, Information Theory,… Brascamp-Lieb Inequalities [BL’76,Lieb’90]

  4. Input B= (B1,B2,…,Bm) Bj:RnRnj linear (BL data)p= (p1,p2,…,pm) pj≥0 ∫xRn∏j fj(Bj(x)) ≤C ∏j |fj|pj f = (f1,f2,…,fm) ( fj:Rnj R+integrable ) [Garg-Gurvits-Oliveira-W’16] Feasibility & Optimal Cin P (through Operator Scaling & Alternate Minimization) Optimization: solving (some) exponential size LPs Brascamp-Lieb Inequalities [BL’76,Lieb’90]

  5. Examples • General statement • Structural theory • Algorithm • Consequences: • Structure • Optimization (?) Notation f:Rd R+ |f|1/p= (∫xRdf(x)1/p)p Plan

  6. Examples

  7. d=1 f1,f2:RR+ [CS] ∫xR f1(x)f2(x) ≤ |f1|2|f2|2 p1=p2=1/2 any other norms? [H] ∫xR f1(x)f2(x) ≤ |f1|1/p1|f2|1/p2 p1+p2=1 pi≥0 Cauchy-Schwarz, Holder

  8. d=2, x=(x1,x2) f1,f2:RR+ [Trivial] ∫xR2f1(x1)f2(x2) = |f1|1|f2|1 p1=p2=1 x2 Loomis-Whitney I a2 A x1 a1 area(A)≤len(a1)len(a2) H(Z1Z2)≤ H(Z1)+H(Z2)

  9. d=3, x=(x1,x2,x3) f1,f2,f3:R2 R+ [LW] ∫xR3f1(x2x3)f2(x1x3)f3(x1x2) ≤ |f1|2|f2|2|f3|2 pi=½ Loomis-Whitney II x2 A12 A23 S any other norms? x1 x3 A13 H(Z1Z2Z2)≤ ½[H(Z1Z2)+H(Z2Z3)+H(Z1Z3)] vol(S) ≤ [area(A12)area(A13)area(A23)]1/2

  10. x2 d=2, x=(x1,x2) f1,f2,f3:RR+ [Young] ∫xR2f1(x1)f2(x2)f3(x1+2) ≤ (√3)/2 |f1|3/2|f2|3/2|f3|3/2 pi=2/3 Young I x1+x2 area(A)≤ (√3)/2[len(a1)len(a2)len(a3)]2/3 a2 A a3 x1 Any other norms? a1

  11. d=2, x=(x1,x2) f1,f2,f3:R2 R+ [Young] ∫xR2f1(x1)f2(x2)f3(x1+2) ≤ C |f1|1/p1|f2|1/p2|f3|1/p3 p1+p2+p3=2 1≥pi≥0 q1q1q2q2q3q3 p1p1p2p2p3p3 qi=1-pi Young II C =

  12. Input B= (B1,B2,…,Bm) Bj:RnRnj (BL data)p= (p1,p2,…,pm) pj≥0 ∫xRn∏j fj(Bj(x)) ≤C ∏j |fj|1/pj f = (f1,f2,…,fm) ( fj:Rnj R+integrable ) Given BL data (B,p): Is there a finite C? What is the smallest C? [ BL(B,p) ] [GGOW’16] Feasibility & Optimal Cin P Brascamp-Lieb Inequalities [BL’76,Lieb’90]

  13. Structure

  14. Input B= (B1,B2,…,Bm) Bj:RnRnj (BL data)p= (p1,p2,…,pm) pj≥0 ∫xRn∏j fj(Bj(x)) ≤C ∏j |fj|1/pjfi [BCCT’08] C<∞ iff p  PB (the Polytope of B) PB:∑jpjnj = n ∑jpjdim(BjV) ≥ dim(V) subspace VinRm pj≥0 (Exponentially many inequalities) Feasibility: C<∞ [Bennett-Carbery-Christ-Tao’08]

  15. Input B= (B1,B2,…,Bm) Bj:RnRnj (BL data)p= (p1,p2,…,pm) pj≥0 ∫xRn∏j fj(Bj(x)) ≤C ∏j |fj|1/pjfi [Lieb’90] BL(B,p)is optimized when fj are Gaussian B1 B2 B3 BL-constant [Lieb’90] A1 A2 sup ∏j det(Aj)pj Aj>0 det(∑j pj BjtAjBj) A3 1/cap(L) = BL(B,p)2= A4 for some completely positive operator L (B,p) A5 Quiver reduction

  16. Algorithms

  17. Input B= (B1,B2,…,Bm) Bj:RnRnj (BL data)p= (p1,p2,…,pm) pj≥0 ∫xRn∏j fj(Bj(x)) ≤C ∏j |fj|1/pjfi [B’89] (B,p)is geometric if (Projection) BjBjt = Inj j (Isotropy) ∑j pj BjtBj = In [B’89] (B,p)geometric BL(B,p)=1 Geometric BL [Ball’89,Barthe’98] Doubly stochastic

  18. [B’89] (B,p)is geometric if • (1) BjBjt = Inj j [Projection property] • (2) ∑j pj BjtBj = In [Isotropy property] • On input (B,p): attempt to make it geometric • Converges iff (B,p) is feasible • [GGOW’16] • - Feasibility (testingC<∞, p  PB) in polynomial time • Feasible(B,p)converges to geometric in polytime • Keeping track of changes approximates BL(B,p) • Structure: bounds & continuity of BL(B,p), LP bounds. Alternate Minimization [GGOW’16] Repeat t=nc times: - Satisfy Projection (Right basis change) - Satisfy Isotropy (Left basis change)

  19. Optimization

  20. e3 P = conv {0, e1, e2,… em}  Rm = { pRm: ∑j pj≤ 1 pj≥ 0 j[m] } Membership Problem: Test if pP? Easyif few inequalities…or [GGOW’16] BL-polytope! B= (B1,B2,…,Bm) Bj:RnRnj PB: { pRm: ∑jpjnj = n ∑jpjdim(BjV) ≥ dim(V)  V ≤Rm pj≥0 } ??Applications?? e2 Linear programming & Polytopes 0 e1

  21. BL polytopes capture Matroids M = {v1, v2,…… vm} vjRn VJ = {vj : jJ} PM = conv {1J:VJ is a basis}  Rm = { pRm: ∑j pj≤ dim(VJ) J[m] pj≥ 0 j[m] } Bj:RnR Bjx=<vj,x> j[m] [Fact] PB = PM Optimization: linear programs with exponentially many inequalities Exponentially many Inequalities

  22. BL polytopes capture Matroid Intersection M = {v1, v2,…… vm} vjRn N = {u1, u2,…… um} ujRn PM,N = conv {1J:VJ,UJ are bases}  Rm [Edmonds] = {pRm: ∑j pj≤ dim(VJ) J[m] ∑j pj≤ dim(UJ) J[m] pj≥ 0 j[m] } Bj:R2nR2Bjx=<vj,x>,<uj,x> j[m] [Vishnoi] PB = PM,N Optimization: linear programs with exponentially many inequalities

  23. General matching as BL polytopes?? G = (V,E) |V|=2n, |E|=m PG = conv {1S:SE perfect matching}  Rm [Edmonds] = {pRm: ∑ijEpij=n ∑iS jSpij≥1 SV odd pij≥ 0 ijE } Is this a BL-polytope? Other nontrivial examples? Optimization? Optimization: linear programs with exponentially many inequalities

  24. Summary One problem : Singularity of Symbolic Matrices One algorithm: Alternating minimization Non-commutative Algebra: Word problem Invariant Theory: Nullcone & orbit problems Quantum Information Theory: Positive operators Analysis: Brascamp-Lieb inequalities Optimization Exponentially large linear programs Computational complexity VP=VNP? Tools, applications, structure, connections,… Math and Computation New book on my website

More Related