1 / 73

Passzívházak, autonóm házak és települési stratégiák

Passzívházak, autonóm házak és települési stratégiák. Ertsey Attila KÖR Építész Stúdió kft. Kihívások - 2012. Olajcsúcs energiaéhség, energiaszegénység Paks bővítése: atomjövő vagy megújuló? Árvíz és aszály Gazdasági válság adósságválság egyéni, önkormányzati és állami közműhátralékosok

topper
Download Presentation

Passzívházak, autonóm házak és települési stratégiák

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Passzívházak, autonóm házakés települési stratégiák Ertsey Attila KÖR Építész Stúdió kft.

  2. Kihívások - 2012 Olajcsúcs energiaéhség, energiaszegénység Paks bővítése: atomjövő vagy megújuló? Árvíz és aszály Gazdasági válság adósságválság egyéni, önkormányzati és állami közműhátralékosok devizahitel-károsultak tömege

  3. Megoldások Új energetikai szabályozás 2020-tól „Nearly Zero” épületek, A+++ „Közel Nullás” épület megvalósítható: passzívházból: 15 kWh/m2év, A++ Alacsony Energiaigényű Házból: 40-80 kWh/m2év, A+ Új energiastratégia Autonóm házak + elektromos autók A+++ közel nullás A++ passzívház

  4. Grid parity Grid parity (hálózat-paritás) az a küszöbérték, melynél az alternatív áramtermelés módszerei legalább olyan olcsók, mint a hálózati áram. (Wikipedia) A napból termelt elektromosság teljeskörű költsége 2009-ben $ 0.25/kWh (50 Ft – ez a hazai lakossági tarifával megegyezik) volt a legtöbb OECD országban. 2011 végére ez leesett $ 0.15/kWh (30 Ft) alá a legtöbb OECD tagállamban és eléri a $ 0.10/kWh (20 Ft) értéket naposabb régiókban (ma < 6 eorocent/W) Az USA Energiaügyi Minisztériumának prognózisa 2016-ra: 6 cent/kWh (12 Ft) A grid parity Németországban 2012-re várható, Magyarországon 2016-ra a német gazdasági minisztérium adatai szerint. Ez demokratizálja és forradalmasítja az áramtermelést, az energiamonopólium megszűnik. 1 lakás bruttó 1 kW beruházásigénye M.o.-on 2010-ben: 1 mFt + ÁFA 3,75 mFt(100%) 1 kW beruházásigénye M.o.-on 2011-ben: 0,8 mFt + ÁFA 3,0 mFt (-20%!) Becsült elérhető csökkenés 2016-ra: cca. 450 eFt + ÁFA 1,68 mFt(-55%) Becsült elérhető csökkenés 2050-re: cca. 200 eFt + ÁFA 750 eFt(-75%) De! 1 kW beruházásigénye M.o.-on 2012-ben: 0,5 mFt + ÁFA 1,9 mFt (-50%!) 2 év alatt 50 % áresés! Tehát már ma elértük!

  5. Országos energiastratégia: megújulók vs. atomPaks bővítése: új 2,5 GW-os blokk, 2500 mrd Ft, 10 év, a magyar villamosenergia-igény 80 %-a Paksról, egy lábon álló, központosított energiarendszer, 2020-tól urán kitermelési csúcs, utána rohamosan emelkedő uránár, 2020 után az atomenergia lesz a legdrágább, a befektetői érdeklődés az atomenergia iránt = 0; 2011: 2500 mrd/1 mft=2,5 GW/ 1 év; 2012-13: 2500 mrd/500 eft=5 GW/ 1 év = 100 %- Geotermia- felszínközeli hasznosítás: termálvíz, fűtés, kaszkád-rendszer - mélyfúrás (3 km): HDR technológia, nagyerőmű – alkalmas a fosszilis és nukleáris erőművek kiváltására, kimeríthetetlen energiaforrás, nincs hulladékSmart grid (Greenpeace Energiaforradalom)- német energiapolitika: decentralizált energiarendszer, több ezer kiserőmű, intelligens hálózattal összekötve, néhány gyors indítású (gáz)erőművel - atomerőművek lassú kivezetése a rendszerbőlVehicle to Grid (V2G) rendszer: csúcserőmű helyett a parkoló elektromos autók akkumulátorából levett energia 2011 április

  6. Fenntarthatóság és autonómia • Energiatakarékosság • Passzív ház • Passzív hűtés • Megújulók használata • nap, szél, víz, geotermia • Emisszió: Zéró CO2 • Fenntartható vízhasználat • Körfolyamatok, egyensúly • Energetikai önellátás • Klimatikus fenntarthatóság - zöldfelületek

  7. Autonóm Ház Millenáris Park 2009 szeptember 16 - december 30. Comfort Budapest, SYMA csarnok, 2010 február 10-12 Construma, 2010 április 14-18, 2011 április Ökotech, 2010 május BNV, 2010 ősz

  8. Mai kertvárosi osztrák passzívház alaptípus • F + 1, extenzív zöldtetővel • energetikai önellátás, hőszivattyús fűtés és melegvíz • tornácszerű árnyékolás • lemezalap, könnyűszerkezet

  9. Velux Aktívház, Pressbaum, Ausztria 2010 július 22

  10. Mennyibe kerül egy Autonóm Ház? • 130 m2-es lakóház • ÉTK 2010: nettó 229 eFt/m2 cca. bruttó 37 mFt • Első minősített passzívház: bruttó 230 eFt/m2 cca. bruttó 30 mFt • Autonóm Ház Konzorcium ajánlott terv: • AEH vagy PH lakóház bruttó 37 mFt • + Autonóm csomag 5 mFt - ZBR támogatás 5 mFt 37 mFt • egy 130 m2-es Autonóm Ház ára bruttó • 37 millió forint • Ezért cserébe kapunk egy olyan házat, • amely független a hálózatoktól. • Megtérülési idő támogatás nélkül: 8-10 év!

  11. Aktívház

  12. Autonómház A szimuláció szerint 6 kW-os Wamsler tűzhellyel kifűtve 18,5 C-t biztosít a szobákban, 20 C-t a központi lakótérben, 22 C a fürdőben, de félteljesítményre, 3 kW-ra állítva is elegendő lehet. (Reith A.)

  13. Passzív szellőzés szél- és szolárkéménnyel Gépészete: Velux vagy Bramac napkollektoros HMV-rendszer, a bojlerbe kötött vízteres Wamsler W1 toldaléktűzhely, külső levegőellátással. Passzív szellőzés, gravitációs szél- és szolárkéménnyel, frisslevegő bevezetés télikertből, manuálisan szabályozott légbeeresztő szelepekkel. PV felülete 10 db Velux vagy Bramac modul, azaz 17 m2, 2,4 kW, mely a háztartási áram fedezésére elegendő. Bővíthető felülete jelentős, közlekedésre fordítható.

  14. Autonómház

  15. Magyarkút, alacsonyenergiás ház Építész: Medgyasszay Péter Épület jellege: 110 m2 hasznos alapterület két szinten Helyszín: Magyarkút (hidegzúg, -3-4°C) Belső hőmérséklet: 19-24 °C Fűtés módja: kályhakandalló, valamint tartalékfűtésként gázkazános felületfűtés HMV készítés módja: gázkazán 2009-2010 fűtési időszakban fogyasztás: 24 q fa, 220 m3 gáz (80-90 eFt/év) Légtömörség: 5,2 Fűtés primer energiaigénye: 37 kWh/m2a Bekerülési költség: 180 eFt/m2 2012 március

  16. AUTONÓM HÁZ AZ ALPOKBANTervező: Andrea Deplazes • Fenntarthatóság minden szinten • a jövő autonóm háza • alternatív energiák hasznosítása • extrém körülmények • nincsenek közművek, utak • a hulladékot sem viszik el a háztól • a napenergia és a gravitáció kihasználása • szuperszigetelés, • légtömörség • hővisszanyerés • passzívház-technológia

  17. A szalmaház • 50 cm szalmafal U-értéke: 0,13 W/m2K • Beépített energiatartalma: 24,7 kWh/m2 (korszerű falazóblokk: 228 kWh/m2) • Bioépítőanyag • Ára alacsony: helyi építőanyag, olcsó előállítás, sajáterős építés lehetősége • Életciklusa végén a természetbe olvad

  18. Egy szalmaház építése 2009

  19. Holcim Roadshow 2010

  20. Ócsai szociális bérlakás-együttes MÉK szakértői javaslat: egyedi, épületenkénti megoldás • A+ energiaosztályú (alacsony energiaigényű épületek, 40-80 kWh/m2év), max. fűtési hőigény 6 kW • 110 m2-ig központi fűtés nélkül működtethető, egy fűtőberendezéssel • tűzhelykazán (fűtés, főzés, HMV, külső levegőellátás, nyáron villanytűzhely) • napkollektor (HMV) • napelem (áramtermelés) • melegvizes puffertartály (hőtárolás) • inverter (megtermelt áram hálózati betáplálás) • ciszterna • helyi növényi tisztító • smart grid, Bükk-Mak-Leader csoport • elektromos töltőállomás és kisbusz • 8 % többletköltségért „Nearly Zero” Wamsler 100 % magyar tűzhelyek-tűzhelykazánok, passzívházhoz is illeszthető, 6/3 kW teljesítménnyel

  21. Zöld Pont – passzív-autonóm irodaház • Célkitűzések: • Energetikai önellátás • Alacsony beépített energiatartalom • Önellátó vízhasználat • talajvíz + esővíz • szürkevíz visszaforgatással • Klimatikus egyensúly (zöldfelület > 80%) • Passzív szellőzés lehetősége áramszünet és elektronikai zavarok esetén – klímahomlokzat és szellőzőkémény

  22. Zöld Pont – passzív-autonóm irodaház Áramellátás nap- és szélenergiával Passzív hűtés-fűtés talajkollektorral Hőellátás napenergiával és hőszivattyúval Ertsey Attila

  23. Jó tájolás Kompakt tömeg: A/V tényező 0,278 m2/m3 Hő- és napvédelem Klimatikusan fenntartható épület: 98 % zöldfelület Klímahomlokzat Elérhető energetikai autonómia Ertsey Attila

  24. Centaurus szárazpissoire 1 liter WC Mini Flush Kézmosóvízből öblítővíz: 1 kézmosás = 2 l víz 2 l víz = 2 öblítés (Toto – Japán) Passzívházak - autonóm házak

  25. Áramellátás Energiatakarékosság: A természetes megvilágítás az irodai területeken 100 %-ban biztosított, a belső helyiségeket (vizesblokk, közlekedőmag) kivéve. Energiatakarékos fogyasztókat alkalmazunk (világítás, irodatechnika, jelenlétérzékelés, standby-killer), LED-ek alkalmazásával. Áramellátás: a szomszédos raktárépület tetején elhelyezett 2300 m2 PV-elemmel és 4 szélkerékkel termeljük. Pillanatnyi maximumteljesítmény: 460 kW PV-felület teljesítménye Korax elemekkel 63-82%, szélkerékkel együtt 100 % Sony elemekkel 84-111 %, szélkerékkel 110-148 % Megtérülés támogatás nélkül, jelenlegi energiaárakkal bekerülés 460 mFt, megtérülés pályázati támogatással < 15 év, anélkül cca. 30 év 2012-es árakkal a megtérülés cca. 10 év

  26. Drezda 2010 • új passzív iskola • 80 kW hőigény, ezt nappal a gyerekek fedezik • 20 kW talajvízkutas hőszivattyú • a tetőn elhelyezendő napelemekkel • továbbfejleszthető autonómmá

  27. Autonóm Város – panelból és gangos házból Fenntarthatósági vizsgálat Budapest két mintaterületén 2004 Egy fenntartható rehabilitáció során elérhető a 80 % energia-megtakarítás, 50% vízfogyasztás-csökkenés és a zöldfelületek megnövelése 0%-ról akár 70%-ra visszabontás, független terasz, energetikai felújítás (Drezda) Belvárosi tömb, tömbbelső bontás, energetikai felújítás

  28. Belváros

  29. Kőbánya, pontházak,energetikai felújítás • Zöldfelületek növelése • Lepényépület építése: szolgáltatások, üzletek, szociális intézmények, parkolók, zöldtető parkkal Panel 2004

  30. Újpalota 2011, panelfelújítás, tervező: Ertsey A. • passzívházzá alakítás, cca. 90% fűtési energia megtakarítás • hőszivattyúra való átállás lehetősége, leválás a távhőről • napelemfelületekkel a fűtés energiaigénye 100 %-ban megtermelhető • megtérülés: 5 év!

  31. Az épület energetikai méretezésea passzívházak tervezésére fejlesztett PHPP számítással készült az 1967-74 közöttalkalmazott • paneltechnológiáról • rendelkezésre álló adatok alapján. • Kiinduló állapot • 258 kWh / m2a 100 % • I. ütem, homlokzatfelújítás49 kWh / m2a - 80 % • 16 cm ásványgyapot hőszigetelés • 3 rtg. passzívház-ablakok • Ideiglenes szellőzés (hőviszanyerés nélkül) • csak hőszigeteléssel 84 kWh/m2a • mért megtakarítás ~ 60 % • II. ütem, gépészeti felújítás- hővisszanyerős szellőzéssel, a lepényépület megvalósulását feltételezve • 17 kWh / m2a - 93 % • ami eléri az épület korszerűsítésekre meghatározott 25 kWh/m2a küszöbértéket és • kielégíti a A+ szintet.

  32. Zsókavár u. 2-4-6. KMOP-5.1.1/C-2f-2009-0001 Megbízó: XV. ker. Önkormányzat – RUP 15 kft. László Tamás polgármester, Novák Ágnes alpolgármester, Imre Ildikó projektmenedzser Építész tervező: Ertsey Attila, KÖR Építész Stúdió Gépész tervező: Kucsera Mihály, DOMTEC kft. Statikus: Zámbó Ernő, Statikus Mérnöki Iroda kft. Kivitelező: Confector Mérnök Iroda Kft.

  33. III. ütem, PV felület + hőszivattyú • - 220 m2 PV felület • - egyedi elektromos légfűtő egység lakásonként • - talajszondás hőszivattyú létesítése, leválás a távhőről • - a PV teljesítménye 18 0C alapfűtést ingyen teljesít • - 18 0C feletti hőmérséklet egyedi elszámolással • - a HMV-ért fizetni kell • - megtérülés ESCO finanszírozással 5 év, a fűtésszámla továbbfizetésével • Konklúzió • - megközelíthető a „Nearly Zero” épület • - az épület energianyerő felületei nem elegendőek az önellátásra • - újépítés esetén elérhető az önellátás • - kis beavatkozás – kis eredmény, a továbbfejlesztés lehetősége csökken

  34. 2011 április

  35. Válságjelenségek • A város, mint parazita • - funkcionális zónák szerinti várostervezés, (le Corbusier) • - logisztikai fejlődés • - centralizáció, tőkekoncentráció, kiszolgáltatottság • - a „Városi levegő szabaddá tesz” elve visszájára fordul • Szuburbanizáció • Urbanizálódó falu • - centralizált ellátórendszerek • - utazási kényszer • nem fenntartható életmód • Kőolajháború

  36. Pruitt-Igoe 1971

  37. Phoenix városa: az agglomerációt is figyelembe véve a laksűrűség az 1950-es 2431 fő/nkm-ről 1990-re 904-re csökkent • A következő 40 év várható lakónépesség-növekedése 6800 nkm mezőgazdasági terület megszűnését jelentheti (ezáltal a beépített terület az 1950-es 44 nkm-ről és az 1990-es 1087 nkm-ről 7000 nkm fölé növekedhet). • Támogatási rendszer (jelzálog hitel, autópálya, benzinár, ingatlanadó, állami támogatás városon kívüli infrastruktúrára)

  38. Centralizáció Urbanisztikai katasztrófa Decentralizáció • Hagyományos, középkori eredetű gazdaság • Ipari forradalom • Modern nagyváros születése, XIX. sz. • XX. sz. a termelés koncentrációja, a város kettészakadása: • centrum és periféria • A város lakhatatlan, kiürül • Informatikai forradalom • Modern vidéki élet: • Földművelés • Mikroipar, hálózatos termelés • Fenntartható környezetterhelés • Megújulók használata • Élhető élet Fenntartható kistérség - Vidékstratégia 2012

  39. Le Corbusier centralizált • városutópiája 1922-ből: • ötmilliós nagyvárosok • zónásítás • tömegközlekedés • 40 m2-es lakáscellák • 20 emeletes lakótornyok • F. L. Wright decentralizált • városmodellje 1930-ból: • ötezer fős kertvárosok • városon belül csak • gyalogos közlekedés • 4000 m2-es lakótelkek • munkahely + lakhatás • egy helyen Passzívházak - autonóm házak

  40. Autonóm Kistérség> 500 % megújuló energiapotenciál felesleg! Holcim Roadshow 2010 Független Ökológiai Központ 1999, Ertsey A., Medgyasszay P.

  41. Fenntarthatósági vizsgálat • Lehatárolás • a vizsgálandó terület ökológiai lehatárolása - a „fenntarthatóság szigete” (Island of Sustainability); • a mintaterületen belül vizsgálandó a fenntarthatóság állapota, a területet körülvevő tágabb környezettel való kölcsönhatások. • Vizsgálat és részvétel„helyi részvételi folyamat” a Local Agenda 21 szerint:1. lépés: nyers elemzés,2. lépés: közös jövőkép, illetve identitás megragadása,3. lépés: részletes elemzés,4. lépés: az első lépések (első projektötletek) meghatározása,5. lépés: a megvalósítás programjának meghatározása,6. lépés: projektmenedzselő szervezet felállítása a folyamat folytatására és gondozására.

  42. Nyers elemzés:- saját képességek, adottságok, potenciálok vizsgálata: földhasználat, energiapotenciál, vízbázis, zöldterület, kulturális és gazdasági képességekInput - Output vizsgálat I. Autonóm kistérség

  43. Autonóm Kistérség 2. Jövőkép-készítésForgatókönyvek Energiaönállóság Vízháztartás egyensúlya Decentralizált ipari termelés lehetőségeFenntartható mezőgazdaságÉlelmiszer-önrendelkezésDecentralizált kereskedelem : helyi piac,Közösségi Támogatású Mezőgazdaság (C.S.A.)Fenntartható, kőolajmentes szállítás, közlekedés Város és városellátó övezet kooperációja3. Részletes elemzésEnergiapotenciál felmérése, stb.4. Projekt-ötletek - modellek

  44. Vizsgálat, állapotfelvétel Tájhasználat művelésmódok védett területek javasolt területhasználatok Teljes termőterület: 23.622 ha Korlátozásokkal nem érintett termőterület: 10.665 ha Alpokalja Kistérség példája Fenntartható kistérség - Vidékstratégia 2012

  45. EnergiaellátásForrásoldal és fogyasztói oldal felmérése és összevetése Potenciálfelmérés (forrásoldal) - napenergia: jól tájolt háztetők felülete, napsütéses órák száma (térkép) - szélenergia: magasság, szélsebesség szerint, térkép, ill. mérés alapján - biomassza-mennyiség: a jövőkép tájhasználata szerinti mennyiségek meghatározása, az alábbi összetevőkkel: - szilárd: tűzifa (erdő, energiaerdő); mezőgazdasági hulladék (szalma, stb.); ipari hulladék; szelektált szemét - folyékony: hígtrágya, növényi olaj (repce, stb.), ipari szennyvíz (vágóhíd, stb.) - vízienergia: vízhozam, esésviszonyok, duzzasztás - geotermikus energia Hatékonyságnövelés (fogyasztói oldal) - energiatakarékosság: hőszigetelés, takarékos fogyasztók alkalmazása - hőszivattyú alkalmazása: földhő, levegő, nap, víz, hulladékhő - kapcsolt energiatermelés: CHP, blokkfűtőmű, ko- és trigeneráció Tényleges fogyasztás: hatékonysággal csökkentett fogyasztási igény Fenntartható kistérség - Vidékstratégia 2012

  46. Felhasználás energiafajták szerint Napenergia: használati melegvíztermelés (HMV); fűtés: Biosolar (fafűtés + napkollektor); áramtermelés: napelem (photovoltaikus cellák); terményszárítás Szélenergia: áramtermelés (szélgenerátorok); vízemelés (szélkerekek) Vízienergia: áramtermelés (turbinák, lapátos kerekek); egyéb: pl. malom, fűrészmalom Biomassza: hőenergia-termelés (kazánok, faapríték-fűtés, stb.) áramtermelés (kétfázisú égetőmű + gázmotor) talajerő-utánpótlás üzemanyag, biodízel (ARD; RME) Geotermikus: fűtés, HMV (hőcserélő, hőszivattyú); áramtermelés: turbina Energiamodellek - Hagyományos energiaellátás modellje - Megújuló energiaellátás modellje - Kombinált energiaellátás modellje - Központi energiaellátás modellje - Nem központi energiaellátás modellje - Napenergia: egyedi HMV-ellátás; közösségi Biosolar távhőellátás - Szélenergia: szélgenerátor méretezés pl.: 1 db generátor 300/86 kW (csúcs/átl.); 1 háztartás: ~ 1500 kWh/év; 1 generátor ellát ~ 520 háztartást - Meglévő távhőmű átalakítása Biosolar fűtőművé Értékelés, megtérülés Mit érdemes használni? Fenntartható kistérség - Vidékstratégia 2012

  47. Energiaigény Alpokalja Kistérség példája Összes energiaigény(hő+áram): 153,3 GWh Fenntartható kistérség - Vidékstratégia 2012

More Related