1 / 37

D. B. Sanders Institute for Astronomy, University of Hawaii

The Dusty and Molecular Universe: A prelude to HERSCHEL and ALMA, 27-29 Oct, 2004, Paris. Starbursts and ULIRGs. Gas-Rich Mergers and the origin of nuclear starbursts and AGN. D. B. Sanders Institute for Astronomy, University of Hawaii. OUTLINE. IR Galaxies: SEDs, LF (vs.z)

tuvya
Download Presentation

D. B. Sanders Institute for Astronomy, University of Hawaii

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Dusty and Molecular Universe: A prelude to HERSCHEL and ALMA, 27-29 Oct, 2004, Paris Starbursts and ULIRGs Gas-Rich Mergers and the origin of nuclear starbursts and AGN D. B. Sanders Institute for Astronomy, University of Hawaii

  2. OUTLINE • IR Galaxies: SEDs, LF (vs.z) • Origin & Evolution of LIGs/ULIGs • ULIGs: Superstarbursts and AGN • ULIGs and QSOs IRAS - ISO - SCUBA - MAMBO (1984) (1996) (1997) (1999) z <0.3 z < 1.5z < 5-6 ? SIRTF+AstroF - Herschel - ALMA (2003) (2006) (2008) (2010) z = 0-10?

  3. Two IRAS All-Sky Surveys: IRAS Revised Bright Galaxy Sample(RBGS:S60>5.24Jy) 638 Galaxies IRAS 1-Jy ULIG Sample(1-Jy:S60>1.0Jy,Lir > 1012 Lsun) 118 Galaxies

  4. Radio-to-UV SEDs of IRAS Selected Galaxies 638 Galaxies: f((60m) > 5 Jy 118 ULIGs: f((60m) > 1 Jy “Infrared Galaxies”  (f)IR / (f)opt > 1

  5. Galaxy Luminosity Functions slope = -1 LFIR high luminosity tail:   L-2.35  (z)  (1+z)5-8  3.5  (z <0.2) ~ 0.008 deg-2

  6. The Hubble Deep Field (The opt/UV view) The FIR/submm view SCUBA 850m

  7. kindly provided by Helmut Dannerbauer

  8. ULIGs at High Redshift ULIGs @ z ~ 2 – 4 f850 ~ 1 – 10 mJy m K ~ 20 – 24 m I ~ 24 – 30 m B ~ 26 – 33

  9. Galaxy Luminosity Functions slope= -1 Z ~2.4 Z=0.80 Z=0.40 Z=0.13 Z=0.045

  10. The “Star Formation Rate” versus Redshift

  11. The Origin and Evolution of Luminous Infrared Galaxies Strong Interactions/Mergers of Molecular Gas-rich Disks

  12. IRAS RBGS Optical Images of LIGs Log LIR = 11.66 - 11.99 Ishida, ApJL (2003) Log LIR = 11.10 - 11.48

  13. IRAS RBGS Optical Images of LIGs Ishida, ApJL (2003) Log LIR = 11.49 - 11.99

  14. IRAS RBGS Conclusion: In the range log(Lir/Lo) = 11.6 - 12.0, LIGs are in the final stages of merging, with a typical “pre-merger” time of tm < 3 x 108 years

  15. IRAS RBGS Optical Images Log LIR = 12.00 - 12.51 Ishida, ApJL (2003)

  16. IRAS RBGS Nuclear Separation vs. Lir

  17. IRAS RBGS Conclusion: At log(Lir/Lo) > 12.0, > 40% of ULIGs have merged and the remainder will merge within a time of tm < 108 years

  18. SummaryProperties of IRAS RBGS+1Jy ULIG samplesLog(LIR/Lsun) = 11.40 - 12.70 • Sources are predominantly strongly interacting/merging spiral pairs •  MK Tot ~ 2 LK* • MK pair ratio < 3:1 • LIR pair ratio < 5:1 • Pairs are predominantly late type spirals (Sb, Sc) • Both components are molecular gas rich (MH2 ~ 109 - 10Msun) •  pair separation  as  pair LIR   • ( Evidence for buildup of dense nuclear gas concentrations ) • ( Evidence for creation of luminous Seyfert 1 nuclei) • ( Evidence for S + S  E )

  19. LCO N=53 LHCN

  20. LIR/LHCN LHCN LCO LIR/LCO

  21. Log (LIR/Lsun) = 11.01 Int. Class = 3 Gao et al. Mirabel et al. Hibbard et al. Ponman et al.

  22. UGC 83038 = Mrk 231 Log (LIR/Lsun) = 12.57 Int. Class = 4 Sanders et al. Hutchings & Neff Scoville et al. Surace et al

  23. SummaryNuclear Molecular Gas Concentrations @ r < 700 pcGeneral Results for ULIGs • Mnuc/Mtot = 40 – 100 % • Mnuc = 1 – 3 x 1010Msun •   (H2) ~ 0.65 – 2 x 1010Msun •  n (H2)spherical ~ 130 – 400 cm-3 • => ffnuc ~ 1 (for a population of W3-like GMCs) •  N (H2)spherical~ 10 23.2 – 23.7 cm-2 OVRO Interferometer Bryant, Scoville et al. 1993-9

  24. Summary Optical Spectral Classification of LIGs+ULIGs Veilleux, Kim & Sanders (1998) KPNO 4m + UH 2.2m

  25. 1-D surface brightness radial profiles

  26. SummaryHost Properties of 1-Jy Sample of ULIGsLog(LIR/Lsun) > 12.0 • redshift range: 0.018 – 0.271 •  MK Tot ~ 2.7 LK* •  MR Tot ~ 2.5 LR* • ~ 1/3 are E (r1/4-law profile @ r ~ 1.5 – 6.0 kpc) • ~ 1/3 are E/Sp • ~ 1/3 are “amorphous/chaotic”

  27. Beyond the IRAS RBGS Sample … Question: What happens Next ?

  28. A Plausible Scenario … LIG ULIG QSO

  29. Evolution of Fine Structure in a “post-merger” simulation Barnes (2002)

  30. Evolution of the Luminosity Profile for a “Post-Merger” Remnant Barnes (2002) R = 27.5 mag arcsec-2 (kpc)

  31. Near-IR Imaging of PGQSOs with Gemini-North Hopuka’a AO System (Olivier Guyon 2002) PG 1411+442 40x40 kpc “Raw Image” (resolution ~0.12 arcsec) PSF-subtracted image ~24 magH arcsec-2 (3)

  32. NIR-AO Imaging of a Complete Sample of 38 PGQSOs Olivier Guyon, PhD Thesis, 2002 Raw (H-band) -psf - <radial profile> Gemini-N 8m

  33. NIR-AO Imaging of a Complete Sample of 38 PGQSOs Olivier Guyon, PhD Thesis, 2002 Raw (H-band) -psf- <radial profile> Mean Radio-to-Xray SED of PGQSOs

  34. Warped Disk ModelSanders, Phinney et al. (1989)

  35. PGQSOs typically have dominant spheroids + a moderate disk component (central bars, mini-spirals, …) • PGQSO hosts typically have faint tidal debris

  36. “SFR + MBH” versus Redshift

  37. Summary • Good evidence for S + S -> E merger sequence for ULIGs • Good evidence for creation of luminous Seyfert 1 nuclei in ULIGs • Confirmation of strong evolution with z in the ULIG population • ISOPHOT Deep Field sources consistent with LIG/ULIGs (z ≈ 0 -1.5) • ?? SCUBA Deep Field sources consistent with LIG/ULIGs (z ≈2 - 4)?? • [“SFR” vs. z ]opt+UV [“SFR” vs. z ]IRAS+ISO+SCUBA • High-z ULIGs may represent epoch of spheroid / MBH formation

More Related