1 / 28

Kaons P ropagation T hrough N uclei

Kaons P ropagation T hrough N uclei. Nuruzzaman Mississippi State University. Medium Energy Physics Group Advisor: Dr.Dipangkar Dutta (http://ra.msstate.edu/~dd285/mep.html) ‏. This work is sponsored  by the Department of Energy  Office of Science Grant No.:DE-FG02-07ER41528.

vienna
Download Presentation

Kaons P ropagation T hrough N uclei

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kaons PropagationThrough Nuclei Nuruzzaman Mississippi State University Medium Energy Physics Group Advisor: Dr.Dipangkar Dutta (http://ra.msstate.edu/~dd285/mep.html)‏ This work is sponsored  by the Department of Energy  Office of Science Grant No.:DE-FG02-07ER41528 Jefferson Lab Hall C Users Meeting 31st January, 2009

  2. Outline • Nuclear Transparency • Nuclear Transparency with Pions & Kaons • Analysis • Preliminary Results

  3. Nuclear Transparency Ratio of cross-sections for exclusive processes from nuclei to those from nucleons is termed as Nuclear Transparency = Free (nucleon) cross-section = Nuclear cross-section .˙. T= Aα-1 parameterized as = Experimentally  = 0.72 – 0.78, for p,k,

  4. Outline • Nuclear Transparency • Nuclear Transparency with Pions & Kaons • Analysis • Preliminary Results

  5. Transparency Experiment with Pions / Kaons Experiment ran in July `04 and December `04 at Jefferson Lab JLab Experiment E01-107: A(e,e΄) Spokespersons : D. Dutta & Rolf Ent Data collected on LH2, LD2, 12C, 63Cu, and 197Au at Pπ of 2.8, 3.2, 3.4, 4.0 and 4.4 (GeV/c) Q2 of 1.1, 2.15, 3.0, 4.0 and 4.7 (GeV/c)2 The experiment was measuring pion transparency, however one  gets kaons along with pions during data collection because kaons fall  within the coincidence window.

  6. Hall C HMS SOS G0 HMS- High Momentum Spectrometer SOS- Short Orbit Spectrometer

  7. Outline • Nuclear Transparency • Nuclear Transparency with Pions & Kaons • Analysis • Preliminary Results

  8. JLab Experiment E01-107 Typical coincidence time spectrum showing the different particles detected π K+ p Coincidence Time (ns) Coincidence time = Time taken by electron to reach SOS - Time taken by hadrons to reach HMS (within a 30ns window)‏ Kaon transparency from electro-production has never been measured before!!!

  9. Particle Identification in the HMS Aerogel Cherenkov  (Aerogel2 of n = 1.015)  (for k/p separation)‏ Gas Cerenkov   (Perflurobutane at 1 atm.)‏ (for pi/k separation)‏

  10. Particle Identification in the HMS e + p e’+K+ + Λ e + A e’+K+ + Λ + X e´  Λ missing mass e A-1 A Reactions Energy & Momentum Conservation Ee + Mp = Ee׳+ EK+ +EΛ Pe + 0 = Pe’ + PK+ + PΛ MΛ = 1.115 GeV/c2 Mass of Λ is MΛ= [EΛ2 - PΛ2 ]1/2 MΣ = 1.119 GeV/c2

  11. Before & After Application of Constraints on Kaon(Liquid Hydrogen) Data Pions Kaons after application of all constraints for H target Kaons MΣ= 1.119 MΛ= 1.115 • Missing Mass: • 1.10<Mx <1.15 for Λ, • 1.17<Mx <1.22 for Σ • Coincidence Time: • abs(cointime+58.63)<0.26 • Gas Cherenkov: • SOS, N(p.e)>1; HMS, N(p.e)<1 • Aerogel Cherenkov: • HMS, N(p.e)<0 • Other acceptances • Hsyptar, hsxptar, hsdelta, ssdelta Protons Pions, Protons, Kaons (in coincidence time vs missing mass ) using a loose Constraints

  12. Experimental Simulation “SIMC” Ingredients of SIMC:1. Realistic Models of the magnetic spectrometers including multiple scattering and energy loss in all intervening material encountered by the particles.2. Decay of kaons in flight, and radiative corrections for all particles.3. Model of the electro production of kaons from free protons4. For heavier targets the free proton model is convoluted with a realistic spectral function for each target. Spectral function = probability of finding a proton inside the nucleus with a certain energy and momentum. Transparency to be extracted as

  13. Comparison of Liquid Hydrogen Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied σ = σ (Q2, W, t,  ϕpq)‏ SIMC Λ SIMC Σ Q2 = Four Momentum Transferred Squared Q2 Q2 The ratio of Λ/Σ is determined from the LH2 data SIMC Λ+Σ Data & Data Q2=1.1 GeV2 : 15.6 Q2=2.2 GeV2 : 9.7 Q2=3.0 GeV2 : 6.4 Red – SIMC Blue – Data Q2 Q2

  14. Comparison of Liquid Hydrogen Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied σ = σ (Q2, W, t,  ϕpq)‏ SIMC Λ SIMC Σ W = Centre of Mass Energy w w SIMC Λ+Σ Data & Data Red – SIMC Blue – Data w w

  15. Comparison of Liquid Hydrogen Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied σ = σ (Q2, W, t,  ϕpq)‏ SIMC Λ SIMC Σ t = Mandelstam Variable t t SIMC Λ+Σ Data & Data Red – SIMC Blue – Data t t

  16. Comparison of Liquid Hydrogen Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied σ = σ (Q2, W, t,  ϕpq)‏ SIMC Λ SIMC Σ ϕpq= Angle Between Reaction Plane & Scattering Plane ϕpq ϕpq SIMC Λ+Σ Data & Data Red – SIMC Blue – Data ϕpq ϕpq

  17. Before & After Application of Constraints on Kaon(Liquid Deuterium) Data Kaons separated after application of all constraints on LD target Pions, Protons & Kaons before application of all constraints for LD target • Missing Mass: • 1.09<Mx <1.22 • Coincidence Time: • abs(cointime+58.63)<0.26 • Gas Cherenkov: • SOS, N(p.e)>1; HMS, N(p.e)<1 • Aerogel Cherenkov: • HMS, N(p.e)<0 • Other acceptances • Hsyptar, hsxptar, hsdelta, ssdelta

  18. Comparison of Liquid Deuterium Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied σ = σ (Q2, W, t,  ϕpq)‏ SIMC Λ SIMC Σ Q2 = Four Momentum Transferred Squared Q2 Q2 SIMC Λ+Σ Data & Data The ratios of Λ/Σ obtained from LH2 data are used to add the Λ-SIMC and Σ-SIMC yields Red – SIMC Blue – Data Q2 Q2

  19. Comparison of Liquid Deuterium Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied SIMC Σ σ = σ (Q2, W, t,  ϕpq)‏ SIMC Λ W = Centre of Mass Energy w w SIMC Λ+Σ Data & Data Red – SIMC Blue – Data w w

  20. Comparison of Liquid Deuterium Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied SIMC Σ σ = σ (Q2, W, t,  ϕpq)‏ SIMC Λ t t t = Mandelstam Variable SIMC Λ+Σ Data & Data Red – SIMC Blue – Data t t

  21. Comparison of Liquid Deuterium Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied SIMC Λ SIMC Σ σ = σ (Q2, W, t,  ϕpq)‏ ϕpq= Angle Between Reaction Plane & Scattering Plane ϕpq ϕpq SIMC Λ+Σ Data & Data Red – SIMC Blue – Data ϕpq ϕpq

  22. Comparison of Data vs Simulation(SIMC)applying all constraints for Other Targets All particle identification and acceptance constraints applied σ = σ (Q2, W, t,  ϕpq)‏ Carbon Copper SIMC Λ+Σ & Data Q2 Q2 Gold Q2 = Four Momentum Transferred Squared Red – SIMC Blue – Data Q2

  23. Outline • Nuclear Transparency • Nuclear Transparency with Pions & Kaons • Analysis • Preliminary Results

  24. Systematic Uncertainties of E01107 Item point-to-point (%)‏ scale(%) total(%)‏ Particle ID 2.0 0.4 - 0.7 Charge 0.3 0.5 Target thickness 0.5 Coin blocking 0.1 Trigger(HMS+SOS)‏ 0.7 Dead time correction 0.1 Tracking(HMS+SOS)‏ 0.5 0.5 Pion Absorption 0.5 2.0 Beam Energy 0.1 0.1 Cut dependence 2.5 0.5 Pion Decay 0.5 1.0 Pauli Blocking 0.5 Radiative Corrections 0.5 1.0 collimator 1.0 Acceptance 0.5 2.0 Iteration 1.0 2.0 Spectral Function 1.0 2.0 TOTAL 3.8 3.9 5.4

  25. Nuclear Transparency vs Q2 Cu, C, LD2 are shifted by -0.05,0.05,-0.10 in Q2 respectively Preliminary Result LD2 - Black Carbon - Red Transparency Copper - Green Gold - Blue Q2 ( GeV/c2 )

  26. Analysis Plan • Determine the model dependent uncertainty • Compare with theoretical calculations(Please contact your favorite • theorist ) • Write paper & publish results This work is sponsored  by the Department of Energy  Office of Science Grant No.: DE-FG02-07ER41528

  27. Thank You

  28. Comparison of Liquid Deuterium Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied SIMC Λ SIMC Σ σ = σ (Q2, W, t, phipq)‏ Missing Mass missing mass missing mass SIMC Λ+Σ Data & Data Red – SIMC Blue – Data missing mass missing mass

More Related