1 / 42

Insegnamento CHIMICA ANALITICA STRUMENTALE

TeCoRe. Insegnamento CHIMICA ANALITICA STRUMENTALE. Docente Prof. Daniele Fabbri Laboratori di Scienze Ambientali via S.Alberto, 163 dani.fabbri@unibo.it Tel. 0544 - 937344. Materiale didattico Rubinson and Rubinson, Chimica Analitica Strumentale, 2002.

vince
Download Presentation

Insegnamento CHIMICA ANALITICA STRUMENTALE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TeCoRe Insegnamento CHIMICA ANALITICA STRUMENTALE Docente Prof. Daniele Fabbri Laboratori di Scienze Ambientali via S.Alberto, 163 dani.fabbri@unibo.it Tel. 0544 - 937344 Materiale didattico Rubinson and Rubinson, Chimica Analitica Strumentale, 2002. Fifield and Kealey, Chimica Analitica, teoria e pratica, 1999. Lucidi: disponibili on-line o presso portineria sede.

  2. PROGRAMMA PARTE PRIMA. Fasi di un procedimento analitico Valutazione del metodo analitico. Campionamento e preparazione del campione Analisi quantitativa PARTE SECONDA Spettrometria atomica: FAAS GFAAS, HGAAS,ICP-AES, ICP-MS. LABORATORI strumenti di indagine bibliografica - uso banche dati Analisi metalli assorbimento atomico. Calibrazione esterna. Analisi acidi grassi gas cromatografia. Calibrazione interna. Elaborazione dati (EXCELL) ESAME Orale. Discussione esercitazione in biblioteca (articolo scientifico ottenuto da una ricerca bibliografica). Discussione esercitazioni di laboratorio (relazioni). Domande sul programma.

  3. CAMPIONE materiale per il quale è richiesta un’informazione analitica lot campione: porzione di materiale selezionato per rappresentare un corpo più esteso di materiale. sub-sample: porzione del campione ottenuto per suddivisione o selezione. campione del laboratorio: materiale inviato al laboratorio per le analisi campione test: campione preparato partendo dal campione di laboratorio PREPARAZIONE DEL CAMPIONE test portion: il materiale pesato e sottoposto all’analisi. TRATTAMENTO DEL CAMPIONE soluzione di misura

  4. Il campione deve essere: • RAPPRESENTATIVO: la composizione è, nella sua globalità, identica a quella del materiale di partenza. • OMOGENEO: la composizione è la medesima in tutte le sue parti. • INTEGRO: non ci devono essere alterazioni durante il trasporto, la conservazione ….(adsorbimento, volatilizzazione, …) altrimenti non si può mettere in relazione il risultato finale con il materiale originale, non importa quanto accurata sia l’analisi

  5. ANALITAil componente da misurare attraverso l’analisi del campione Specificare l’identità dell’analita. nome comune nome commerciale nome IUPAC Chemical Abstract Registry Number (CA RN) formula di struttura nome della miscela, presenza di isomeri, sottoprodotti…? esempio : DDT p,p’-DDT diclorodifeniltricloroetano 1,1,1-tricloro-2,2-bis(4-clorofenil)etano (IUPAC) 1,1’-(2,2,2-tricloroetilidene)bis[4-clorobenzene] (CA) CA RN 50-29-3 Trade Names: Agritan, Anofex, Arkotine, ….,Santobane, Zeidane, Zerdane… struttura molecolare Vedi :esercitazione in biblioteca

  6. MATRICEi componenti del campione chimicamente diversi dall’analita. Il termine MATRICE è usato anche per Indicare le caratteristiche fisiche del campione (solido, liquido, gassoso, organico, inorganico, ecc). La natura della matrice e dell’analita definiscono la procedura di preparazione e trattamento del campione. Esempio: • ANALITA MATRICE TRATTAMENTO • inorganico inorganica dissoluzione-digestione • inorganico organica distruzione sostanza organica • organico inorganica estrazione • organico organica estrazione selettiva Analysts are seldom lucky enough to be able to inject samples with no pretreatment RE Majors, LC-GC 2003

  7. INTERFERENZAeffetto indesiderato di un componente sulla accuratezza della misura di un altro componente. Esempi: Interferenza da PAN nella determinazione NOx nell’atmosfera. [NOx] = [NO] + [NO2] ; PAN = perossiacetilnitrato Si effettua misura NO per chemiluminescenza, dopo che un convertitore ha trasformato NO2 in NO. Il convertitore trasforma anche il PAN in NO. Interferenza trascurabile nelle zone urbane ([NOx] >> [PAN]), significativa nelle zone rurali ([NOx]max). Interferenza dei cloruri nella determinazione ICP-MS dell’arsenico. Il cloruro produce nel plasma lo ione 40Ar35Cl+ isobaro con 75As+ . CONTAMINAZIONE introduzione non intenzionale dell’analita o di altre specie nel campione possibile causa di errore nella determinazione. Spesso è irriproducibile ed erratica. Esempio: lavaggio della vetreria inadeguato per l’analisi di metalli in tracce.

  8. ng / l 10000 1000 100 10 anno 1 1930 1940 1950 1960 1970 1980 GLI ERRORI La storia contaminata. Concentrazioni di piombo nell’acqua di mare pubblicate dal 1938 al 1980. tratta da M.Stoeppler Ed. Sampling and Sample Prep., Springer 1997

  9. Errori casuali: originati da processi incontrollabili e indeterminati, riducibili (ma non eliminabili) con un lavoro attento, presentano variazioni positive e negative, misurati dalla deviazione standard s. Minore il contributo degli errori casuali, più precisa la procedura. Errori sistematici (determinati): originati da cause determinate con lo stesso andamento (positivo o negativo), in principio eliminabili. Misurati dal bias. Errori grossolani. Errori di calcolo, lettura, ….

  10. RISULTATO il valore finale riportato per una quantità misurata o calcolata dopo avere effettuato la procedura di misurazione comprese le opportune valutazioni. numero + unità di misura + incertezza ESEMPIO: valore medio Xm ± deviazione standard s , n (numero di misure) stima del valore ± stima della “precisione”, n Cifre significative: Le cifre note con certezza più la prima cifra incerta (qualunque sia la posizione della virgola).l L’errore di una misura è rappresentato dall’errore sull’ultima cifra. Gli zeri a destra delle cifre significative sono significativi (se dopo la virgola), a sinistra no (indicano l’ordine di grandezza). 0.0410 tre cifre significative 650 tre o due cifre significative, meglio usare la notazione scientifica: 6.50·102 oppure 6.5·102

  11. LA PROCEDURA ANALITICA definizione dell’informazione desiderata ricerca bibliografica scelta del metodo strategia di campionamento campionamento subsampling campione per il laboratorio aliquote per le analisi omogeneizzazione conservazione … pretrattamento: eliminazione interferenti forma idonea per l’analisi determinazione -bianco - calibrazione - campione - RM, CRM convertire i dati in risultati numerici interpretazione dei risultati

  12. CONSERVAZIONE DEL CAMPIONE volatilizzazione fotodegradazione attività microbica ossidazione rilascio di contaminanti reazioni chimiche adsorbimento

  13. TRATTAMENTO DEL CAMPIONE • Trasformare analita/matrice nella forma più adatta alla tecnica d’analisi • Rimuovere interferenti • Ottenere concentrazione ottimale • Evitare contaminazione. • Minimizzare perdite Durante il trattamento del campione si possono avere perdite di analita. La capacità della procedura analitica di misurare la quantità reale di analita presente inizialmente nel campione è espressa dal recupero (recovery): R, recupero % = Cmisurata/Cattesa·100 = Qmisurata/Qattesa·100 La concentrazione C (o quantità Q) di analita attesa può essere ottenuta dal valore certificato di un CRM, oppure stabilita preparando un campione fortificato. Il valore ideale è R = 100% Se R < 100% possibili cause: perdite durante le fasi di trattamento (filtrazione, ecc.) Se R > 100% possibili cause: contaminazione.

  14. Esempi di trattamento del campione • METALLI • Matrice : acqua • Filtrazione. • preconcentrazione: complessare il metallo con un legante organico per estrarlo in un solvente organico. Matrice: solida • digestione: trattamento con acidi forti concentrati a caldo; bomba per digestione se si formano prodotti volatili; digestione assistita da microonde (T< 200°C) Acidi utilizzati: HNO3, H2SO4, HClO4: ossidanti, precauzioni se organici elevato. HCl: complessante, in miscela con altri acidi. HF: disgregazione totale silicati; per analisi concentrazione totale. ORGANICI • estrazione. (biota dopo saponificazione; sedimenti); a riflusso; soxhlet; estrazione accelerata con solvente (ASE T>, P>, t<, V<); con fluidi supercritici (SFE; es.CO2). • cromatografia su colonna; per eliminare interferenti.

  15. costi/investimenti durata dell’analisi throughput sicurezza, tossicità reagenti greenness abilità richiesta all’operatore portability ruggdness dimensione del campione criteri per la scelta del metodo analitico FIGURE DI MERITO precisione accuratezza (bias) sensibilità limite di rivelabilità selettività intervallo dinamico

  16. VALIDAZIONE è il processo che permette di dimostrare se i risultati ottenuti con il metodo sono affidabili, riproducibili e se il metodo è adatto per l’applicazione richiesta. • Può essere effettuata tramite: • Confronto con un metodo differente sullo stesso campione (le fonti di errori dovrebbero essere differenti). • Confronto con altri laboratori (partecipazione a studi inter-laboratorio). • Uso di materiali di riferimento (certificati). • Quando validare un metodo • Viene sviluppato un nuovo metodo per risolvere un particolare problema. • Si intende migliorare un metodo esistente per estenderlo ad un nuovo problema. • Il controllo di qualita’ mostra che le prestazioni del metodo stanno cambiando. • Si intende valutare la prestazione del laboratorio anche per un metodo esistente, utilizzato da un altro laboratorio, analista, …

  17. materiali di riferimento - materiali di riferimento certificati (CRM) Reference material(RM): a material or substance, one or more of whose property values are sufficiently homogeneous and well-established to be used for the calibration of an apparatus, for the assessment of a measurement method or for assessing values to materials. Certified reference material (CRM):a reference material, accompained by a certificate, one or more of whose property values are certified by a procedure. This procedure enables the material’s traceability to be established in terms of the SI unit (to be understood as: a mole of a substance…). Each certified value is accompanied by an uncertainty at a stated level of confidence. ISO guide 1991 Alcuni enti che producono (C)RM ASTM American Society for Testing and Materials BCR Bureau Communitaire de Reference IAEA International Atomic Energy Agency NIST National Institute of Standard and Technology NRC National Research Council of Canada • Come scegliere i crm • Il materiale di riferimento dovrebbe avere una composizione simile a quella del campione (matrix matching) • Contenere l’analita ad una concentrazione simile a quella del campione.

  18. valori misurati analisi strumentale X1 X2 soluzione di misura X3 X4 PRECISIONE concordanza fra misure ripetute Serie: i risultati …Xi… di analisi ripetute usando un solo metodo analitico su un materiale omogeneo n : il numero totale dei valori misurati della serie. Il numero di repliche n va sempre riportato. Media (aritmetica) : Xm = SXi / n = (X1 + X2 + X3 + X4) / n indici della precisione (imprecisione) della misura Stima della deviazione standard: s = [S(Xi - Xm)2/ (n -1)]1/2 Deviazione standard relativa: sr = s / Xm errore standard della media: s/n1/2 numero minimo consigliato per una stima utile: n = 6

  19. valore misurato soluzione di misura prelievo porzioni test misura calcoli trattamento X1 X2 campione test campione test X3 X4 valore misurato misura calcoli X1 soluzione di misura X2 prelievo porzione test trattamento X3 X4 Esempi di analisi replicate Precisione del metodo

  20. Calcoli: Ym = 10.102 s = 0.0130 rsd% = 0.13 % Y1 = 10.09 Y2 = 10.11 Y3 = 10.09 Risultato: Ym = 10.10 ± 0.013 n = 5 Y4 = 10.10 Y5 = 10.12 conc. rame nella soluzione diluizione 2 mL a 10 mL digestione 20 mL 20 mL 20 mL 20 mL misura 0.383 mg/L 0.377 mg/L 0.394 mg/L 0.380 mg/L 0.5344 g 0.4984 g 0.5003 g 0.5034 g Risultato: 75.4 ug /g ± 2.9 ug/g (RSD = 3.8 %) n = 4 oppure 75 ug /g ± 3 ug/g n = 4

  21. tempo Ripetibilità: s è riferito allo stesso metodo sullo stesso materiale nelle stesse condizioni (operatore, apparato, laboratorio) dopo brevi intervalli di tempo. Riproducibilità: s è riferito allo stesso metodo sullo stesso materiale in condizioni diverse (operatore, apparato, laboratorio) e/o dopo lunghi intervalli di tempo. Currie and Svehla, Pure and Appl.Chem. 66(1994)595.

  22. Valore vero t : valore ideale che si potrebbe ottenere se tutte le cause di errore fossero eliminate e l’intera popolazione fosse campionata. Valore ‘ritenuto vero’ T (accepted reference value; conventional true value) valore attribuito ad una quantità e accettato con un incertezza appropriata per un determinato scopo.). CRM T è il valore certificato materiale FORTIFICATO (spiked) T è il valore stabilito dall’aggiunta dell’analita

  23. ACCURATEZZA (accuracy): concordanza tra il risultato ed il valore ‘vero’ T L’accuratezza è un concetto qualitativo.Una misura è accurata quando è precisa e libera da bias. ESATTEZZA (trueness):vicinanza di accordo tra il valore medio Xm ottenuto da una serie grande di misure e T. ACCURATEZZA PRECISIONE diminuita da errori casuali ESATTEZZA diminuita da errori sistematici

  24. Errore del risultato : Ei = Xi - T Errore relativo: Er = E / T Errore relativo percentuale Er(%) = E/T•100 BIAS E = Xm - T Ei = (Xi - Xm) + (Xm -T) = Ecasuale + Esistematico(bias) In questo caso l’accuratezza indica una combinazione di errori casuali e sistematici. Currie and Svehla, Pure and Appl.Chem. 66(1994)595.

  25. bias totale bias del metodo bias del lab media inter-laboratorio valore misurato media laboratorio valore vero Bias del metodo: tipico del metodo, l’errore si presenta in qualsiasi laboratorio; corrisponde al bias di un test inter-laboratorio. Bias del laboratorio: comprende il bias del metodo e il bias inerente al dato laboratorio.

  26. CALIBRAZIONE insieme di operazioni che stabiliscono, sotto condizioni specificate, le relazioni tra i valori delle quantità indicate da un sistema di misura e i valori corrispondenti realizzati da uno standard. STANDARD di CALIBRAZIONE materiale con valori noti della quantità Qst da misurare. Esempio: composto puro in un solvente. Qst STRUMENTO DI MISURA segnale Yst CONFRONTO. Calibration is comparison RELAZIONE Q - Y segnale Yc STRUMENTO DI MISURA CAMPIONE Qc Nota bene: non confondere CALIBRAZIONE (= relazione tra segnale e misurando) e TARATURA (= accertamento funzionalità di uno strumento).

  27. PROTOCOLLO DI CALIBRAZIONE preparazione (ottenimento) degli standard analisi degli standard produrre il modello di calibrazione analisi dei campioni Y = aX + b applicare il modello di calibrazione ai dati dei campioni ricalibrare regolarmente Il modello di calibrazione viene utilizzato per ricavare il valore di C del campione utilizzando la funzione inversa: MODELLO ANALITICO. X = Y - b / a

  28. stock solution diluizioni seriali 1 mL qb a 200 mL 1000 mg Cu / L 1 mL qb a 100 mL PROTOCOLLO DI CALIBRAZIONE modello di calibrazione soluzioni di calibrazione segnale Y misura 50.0 ugCu / L solvente Y = 0.0158*C + 0.0045 R2 = 0.9981 0 uL + 1000 uL 100 uL + 900 uL 250 uL + 750 uL 500 uL + 500 uL 750 uL + 250 uL 1000 uL + 0 uL bianco 5.00 ug/L 12.5 ug/L 25.0 ug/L 37.5 ug/L 50.0 ug/L 0.002 0.092 0.202 0.378 0.615 0.788

  29. campione test 0.513 32.2 ug/L ANALISI CAMPIONE segnale soluzione di misura prelievo porzione test misura trattamento 0.513 modello di calibrazione modello analitico C = (Y - 0.0045) / 0.0158 Y = 0.0158*C + 0.0045

  30. A valori bassi di concentrazione il segnale è troppo debole; A valori alti di concentrazione si hanno deviazioni dalla proporzionalità (a in genere diminuisce all’aumentare di C). Y intervallo dinamico lineare Yb LOL LOQ LOD concentrazione C la curva di calibrazione INTERVALLO DINAMICO (dynamic range) del metodo: valori estremi di concentrazione C fra cui si registra una variazione netta del segnale Y al variare di C. INTERVALLO DINAMICO LINEARE: valori di estremi di concentrazione (LOQ-LOL) in cui il segnale Y varia linearmente con la C.

  31. REGRESSIONE LINEARE : l’operazione per ottenere la relazione lineare Yr = b + a•Cr che meglio interpola i dati sperimentali Yst, Xst ottenuti dall’analisi di N soluzioni di calibrazione. La retta ottimale è quella che minimiza la somma dei quadrati dei residui : S(Yst - Yr)2 valore minimo Y Yr = a•Xr + b PENDENZA (sensibilità) a = S(Xst - Xm)•(Yst - Ym)/S(Xst-Xm)2 INTERCETTA b = Xm - a•Xm Yst, Xst Ym = SYst / N Cm = SCst / N Xm, Ym centroide X

  32. il modello di calibrazione single-point calibration : La calibrazione più semplice è quella in cui si usa un solo standard): Yst, Xst. Si assume Y = 0 per X = 0; risposta lineare da X = 0 a X = Xst (estrapolazione oltre i valori Yst, Xst sconsigliata). Modello di calibrazione lineare : Y = a•C + b= S•C + Yb I chimici hanno favorito metodi con relazioni lineari, causa difficoltà ad interpolare curve. Ci sono metodi analitici non-lineari (saggi immunologici). Con lo sviluppo dei computer l’interpolazione dei punti diventa più semplice. Difficile trovare equazioni su basi teoriche teoriche, perché la non-linearità è dovuta a molteplici cause. Relazioni empiriche: Modello di calibrazione polinomiale : Y = b + a•C + a’•C2 + a’’•C3 + … problemi: necessita più standard, maggiori difficoltà nella valutazione dell’incertezza,

  33. metodo più sensibile Y metodo meno sensibile C SENSIBILITÀ costante di propozionalità tra il segnale ed il misurando .S = dY / dX pendenza della retta di calibrazione Y = a C + b è una misura dell’abilità di un metodo di distiguere piccole differenze di concentrazioni dell’analita.

  34. esempio Analisi del Si tramite AAS 251.61 251.61 intensità relativa assorbanza 252.85 250.69 252.41 251.43 251.92 251.92 lunghezza d’onda, nm concentrazione Si, mg/L curve di calibrazione lineari per ogni linea analitica. linee analitiche del Si nell’intervallo 250-253 nm La sensibilità dipende dalla scelta della l di misura

  35. CALIBRAZIONE ESTERNA standard esternoanalita nella soluzione di calbrazione misurato separatamente dal campione. Il campione contenente quantità ignote di analita e le soluzioni di calibrazione contenenti quantità note di analita standard sono separate. Soluzioni di calibrazione preparate per diluizioni seriali da una soluzione madre concentrata. Composizione soluzione di calibrazione simile alla soluzione del campione ?  matrix matching Soluzioni del bianco. Es. solvente puro (es. H2O), azzeramento dello strumento. Soluzione del bianco procedurale (dei reagenti): contiene tutte le sostanze usate nella preparazione del campione alla stessa concentrazione della soluzione di misura (il valore va sottratto da quello del campione). (es. soluzioni di HNO3/HCl) Matrix blank solution: contiene anche i costituenti della matrice (es. sedimento).

  36. CALIBRAZIONE INTERNA standard interno sostanza differente ma simile all’analita (surrogato: comportamento simile a quello dell’analita). può essere aggiunto al campione nella fase iniziale della procedura, in fasi successive o nella soluzione di misura. Scopo: controllare un passaggio critico causa di elevata incertezza. Rapporto [analita]/[surrogato] meglio di [analita] solo Fattore di risposta F = [analita]•Ys/[surrogato]•Ya Esempi surrogato: Cd per Tl, Pd per Pt spettroscopia atomica 57Co (radioattivo) per 59Co analisi radiochimica composto organico marcato con 2H, 13C analisi MS appartenente alla stessa classe (CH3(CH2)17COOH per acidi grassi)

  37. area analita / area s.i. Qs.i. (area analita / area s.i.) concentrazione analita Quantità di analita Q analita standardizzazione interna Preparazione delle soluzioni di calibrazione. Lo standard interno si trova alla stessa concentrazione in tutte le soluzioni (e lo sarà nella soluzione campione), mentre la concentrazione dell’analita varia. soluzione di standard interno soluzione di analita solvente

  38. RUMORE DI FONDO: variazione indesiderata del segnale, casuale e dipendente dal tempo(noise); segnale non dovuto all’analita, costante o lentamente variabile (deriva) (background). BIANCO: campione che non contiene analita deliberatamente aggiunto, ma contiene tutti i (o alcuni dei) componenti della procedura analitica. Y analisi del bianco N noise misurato come differenza tra il valore più alto e quello più basso (da picco a picco) oppure come valore medio. N tempo analisi del campione Y S segnale (altezza del picco). S Rapporto segnale su rumore : S / N tempo

  39. Yb Ylod f 3Sb Y LOD - LIMITE DI RIVELAZIONE (limite di rivelabilità, limit of detection): la quantità di analita che produce il minimo segnale significativamente diverso da quello del bianco. Ylod = Yb + 3sb Ylod LOD Yb segnale del bianco sb deviazione standard del bianco Ylod segnale del campione al LOD

  40. Y S N tempo determinare il LOD LODquella concentrazione che produce un rapporto segnale su rumore S / N = 3 dal rapporto segnale/rumore S/N LOD= 3·sb / a dalla retta di calibrazione Y = aC + b dalla retta di calibrazione: Ylod = a LOD + b LOD = (Ylod - b) / a ponendo b  Yb LOD = (Ylod - Yb ) / a sostituendo Ylod con la definizione di LOD: Ylod = Yb + 3sb LOD = 3sb) / a Y b+ 3sb b C LOD

  41. Y C metodo 1 LOD LOD metodo 2 3s Yb Y= a C + b il LOD dipende dagli effetti del fondo e dalla sensibilità (a). LOD = 3s / a limite di quantificazione LOQ = 10 s / a

  42. Selettività: indica quanto il metodo è libero da interferenze. Coefficiente di selettività dell’analita A rispetto l’interferente B :K = Sb / Sa. Specificità: capacità del metodo di distinguere tra l’analita e le altre sostanze. Robustezza(robustness): capacità del metodo di resistere alle variazioni delle condizioni sperimentali.

More Related