1 / 55

Exotics at

&. Exotics at. Stephen L. Olsen Seoul National University 447 th Wilhelm & Else Heraeus Seminar: Charmed Exotics Aug 10-12, 2009 Bad Honnef Germany. & CDF. cc production at B factories. division of labor. Outline. X(3872) States near 3940 MeV Z(4430) and Z 1 (4050) & Z 2 (4250 ).

virgil
Download Presentation

Exotics at

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. & Exotics at Stephen L. Olsen Seoul National University 447th Wilhelm & Else Heraeus Seminar: Charmed Exotics Aug 10-12, 2009 Bad Honnef Germany & CDF

  2. cc production at B factories division of labor

  3. Outline • X(3872) • States near 3940 MeV • Z(4430) and Z1(4050) & Z2(4250)

  4. X(3872)p+p-J/y in Belle recent results arXiv:0809.1224 605 fb-1 diquark-diquark prediction: DM=8±3 MeV Maiani et al PRD71, 014028

  5. 413 fb-1 B+X(3872)K+ 8.6 BABAR: PRD 77,111101 (2008) [413 fb-1] mJ/ψπ+π- (GeV/c2) 413 fb-1 B0X(3872)K0S 2.3 BABAR mJ/ψπ+π- (GeV/c2) X(3872)p+p-J/y in BaBar recent results = (2.7 ± 1.6 ±0.4) MeV = 0.41 ± 0.24 ± 0.05

  6. X(3872)p+p-J/y in CDF recent results Fits for 2 nearby states ~6000 events! arXiv:0906.5218 dMX < 3.6 MeV @ 95% CL MX = 3871.61 ± 0.16 ± 0.19 MeV

  7. M(X(3872)) p+p-J/y mode only <MX>= 3871.46 ± 0.19 MeV new Belle meas. new CDF meas. MD0 + MD*0. dm = -0.35 ± 0.41 MeV

  8. No sign of a mass doublet ala Maiani et al • MX(3872) in p+p-J/y mode more precise than MD0 + MD*0 ± 190keV ± 360keV BES III can improve on this

  9. The on-going saga of X3872D*0D0 BaBar 2006 X3872D0D*0(p0D0,gD0) Belle 2006 X3872D0D0p0 414fb-1 D0D0p0 Fit with truncated BW Fit with truncated BW Is this the higher mass partner state predicted by Maiani et al?

  10. Belle in 2009 605fb-1 D0D*0(D0g) Esignal= 50+15 evts Signif.=7.9s -11 605fb-1 D0D*0(D0p0) Fit with a phase-space modulated BW

  11. Flatte formula fits well also ala Hanhart et al, PRD76, 034007 (2007) Esignal= 63.5±12.0 evts Signif.=8.8s g=0.3. fr=0.007 both fixed Ef= -14.9±2.0 MeV

  12. Braaten 2009 Still wrong guys!!! D0D*0(D0p0) D0D0p0 p+p-J/y arXiv: 0907.3167 --- & the next speaker

  13. Braaten’s fits

  14. theorists here should agree on the proper form & then experimenters should use it in a proper unbinned fit

  15. X(3872)gJ/y & gy’ from BaBar PRL 102, 132001 (2009) 3.5s X(3872) J/y g X(3872)y(2S) g 3.0s BABAR BABAR BF(B+X3872K+)×(X3872J/yg) =(2.8 ± 0.8 ± 0.2) × 10-6 BF(B+X3872K+)×(X3872y’g) =(9.5 ± 2.7 ± 0.9) × 10-6 • C-parity = +1 • JPC = 2 -+ disfavored  multipole suppression • Bf(X3872gy’) > Bf(X3872gJ/y) bad for molecules

  16. BKp X(3872) from Belle ~90 events Very weak K*(890) Backgrounds from J/y sidebands M(ppJ/y)) M(Kp) Bf(BJ/y K*0) Bf(BJ/y KpNR) ~4 arXiv:0809.1224 605 fb-1

  17. DD* molecular models for the X(3872) attribute its production & decays  charmonium to an admixture of cc1’ in the wave fcn. But BKp X(3872) is very different from BKp charmonium KpX3872 Kpy’ Kpcc1 Belle arXiv 0809.0124 Belle arXiv 0809.0124 Belle PRD 74 072004 Belle PRD 74 072004 M(Kp) M(Kp) KpJ/y Kphc M(Kp) Belle F.Fang Thesis BaBar PRD 71 032005 M(Kp) M(Kp)

  18. States near 3940 MeV

  19. The states near 3940 MeV-circa 2005- Z(3930) X(3940) Y(3940) gg DD e+e- J/y DD* BKwJ/y Probably the cc2’ M(wJ/y) M(DD) M(DD*) M = 3929±5±2 MeV Gtot = 29±10±2 MeV Nsig =64 ± 18evts M≈3940 ± 11 MeV G≈ 92 ± 24 MeV M = 3942 +7± 6 MeV Gtot = 37 +26 ±12 MeV Nsig =52 +24 ± 11evts -6 -15 -16 PRL 96, 082003 PRL94, 182002 (2005) PRL 100, 202001

  20. Y(3940)  DD* ? BKDD* 3940 MeV 3940 MeV

  21. X(3940)wJ/y? e+e-J/y + (w J/y) M(w J/y) PRL 98, 082001

  22. X(3940) ≠ Y(3940) @ 90% CL

  23. Y(3940) confirmed by BaBar B±K±wJ/y B0KSwJ/y ratio M(wJ/y) PRL 101, 082001 Some discrepancy in M & G; general features agree

  24. Belle-BaBar direct comparison Same binning (Belle published result : 253 fb-1) 492fb-1 Belle will update with the complete (4S) date set later this Fall

  25. ggY(3915)wJ/y from Belle M: 3914  3  2MeV, G: 23  10 +2-8 MeV, Nres = 55  14 +2-14 events Signif. = 7.7s, 7.7s preliminary Probably the same as the Belle/BaBar Y(3915) C.Z. Yuan’s talk in the next session

  26. _ cc assignments forX(3940) & y(3915)? hc’’’ hc” cc0’ 3940MeV 3915MeV • Y(3915) = cco’? G(wJ/y) too large? • X(3940) = hc”?  mass too low?

  27. Z(4430) and Z1(4050) & Z2(4250) Smoking guns for charmed exotics: u c c d

  28. BK p y’ (in Belle) ?? M2(p+y’) K*(1430)K+p-? K*(890)K+p- M2(K+p-)

  29. The Z(4430)± p±y’ peak BKp+y’ evts near M(py’)4430 MeV M(Kp’) GeV Z(4430) M2(p±y’) GeV2 M(p±y’) GeV M2(Kp’) GeV2 “K* Veto”

  30. Shows up in all data subsamples

  31. Could the Z(4430) be due to a reflection from the Kp channel?

  32. Cos qp vs M2(py’) p qp y’ K +1.0 22 GeV2 (4.43)2GeV2 0.25 M2(py’) cosqp 16 GeV2 -1.0 M (py’)& cosqp are tightly correlated; a peak in cosqp peak in M(py’)

  33. S- P- & D-waves cannot make a peak (+ nothing else) at cosqp≈0.25 not without introducing other, even more dramatic features at other cosqp (i.e., other Mpy’) values.

  34. But…

  35. BaBar doesn’t see a significant Z(4430)+ “For the fit … equivalent to the Belle analysis…we obtain mass & width values that are consistent with theirs,… but only ~1.9s from zero; fixing mass and width increases this to only ~3.1s.” Belle PRL: (4.1±1.0±1.4)x10-5

  36. Reanalysis of Belle’s BKpy’ data using Dalitz Plot techniques

  37. 2-body isobar model for Kpy’ Our default model K*y’ B K2*y’ Kpy’ KZ+

  38. Results with no KZ+ term 2 1 3 1 2 4 5 C B A 3 4 A B 5 C fit CL=0.1% 51

  39. Results with a KZ+ term 2 1 B 2 3 4 5 A 1 3 4 C B C A 5 fit CL=36%

  40. Compare with PRL results K* veto applied With Z(4430) Signif: 6.4s Published results Without Z(4430) Mass & significance similar, width & errors are larger BaBar: Belle: = (3.2+1.8+9.6 )x10-5 0.9-1.6 No big contradiction

  41. Variations on a theme Z(4430)+ significance Others: Blatt f-f term 0r=1.6fm4fm; Z+ spin J=0J=1; incl K* in the bkg fcn

  42. The Z1(4050)+ & Z2(4250)+p+cc1 peaks R. Mizuk et al (Belle), PRD 78,072004 (2008)

  43. Dalitz analysis of B0K-p+cc1 DE GeV ??? G K3*(1780) K*(1680) K*(890) K*(1400)’s M(J/yg) GeV

  44. BKpcc1 Dalitz-plot analyses Default Model K*cc1 B K2*cc1 Kpcc1 KZ+

  45. a b c d g f e Fit model: all low-lying K*’s (no Z+ state) a b e f c d g C.L.=310-10

  46. a b c d g f e Fit model: all K*’s + one Z+ state a b e f c d g C.L.=0.1%

  47. a b c d Are there two? ? ? ? ?

  48. a b c d g f e Fit model: all K*’s + two Z+states a b e f c d g C.L.=42%

  49. Two Z-states give best fit Projection with K* veto

  50. Systematics of B0→ K-π+c1 fit M=1.04 GeV; G=0.26 GeV Significance of Z1(4050)+ and Z2(4250)+ is high. Fit assumes JZ1=0, JZ2=0; no signif. improvement for JZ1=1 &/orJZ2=1.

More Related