1 / 41

Paul Lyons and Giovanni Moretti HCI Research Group Massey University New Zealand

I NCORPORATING G ROUPS I NTO A M ATHEMATICAL M ODEL O F C OLOR H ARMONY F OR G ENERATING C OLOR S CHEMES F OR C OMPUTER I NTERFACES. Paul Lyons and Giovanni Moretti HCI Research Group Massey University New Zealand. A M ATHEMATICAL M ODEL O F C OLOR H ARMONY F OR

walker
Download Presentation

Paul Lyons and Giovanni Moretti HCI Research Group Massey University New Zealand

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. VECIMS 2005

  2. VECIMS 2005

  3. INCORPORATING GROUPS INTO A MATHEMATICAL MODEL OF COLOR HARMONY FOR GENERATING COLOR SCHEMES FOR COMPUTER INTERFACES Paul Lyons and Giovanni Moretti HCI Research Group Massey University New Zealand VECIMS 2005

  4. A MATHEMATICAL MODEL OF COLOR HARMONY FOR GENERATING COLOR SCHEMES FOR COMPUTER INTERFACES INCORPORATING GROUPS INTO THE COLOR HARMONIZER Paul Lyons and Giovanni Moretti HCI Research Group Massey University New Zealand VECIMS 2005

  5. WHAT’s THE COLOR HARMONIZER ALL ABOUT? Geometric relationships in color space VECIMS 2005

  6. WHAT’s THE COLOR HARMONIZER ALL ABOUT? A B A B • Replacing manual updating with calculation Where should the controls be set? Must we copy the RGB values? VECIMS 2005

  7. MUNSELL’S COLOR NOTATION rat color town blond stifled sigh widow’s joy elephant’s breath envenomed monkey VECIMS 2005

  8. MUNSELL’S COLOR NOTATION Perceptually uniform spaces VECIMS 2005

  9. MUNSELL’S COLOR NOTATION Perceptually uniform spaces VECIMS 2005

  10. MUNSELL’S COLOR NOTATION VECIMS 2005

  11. MUNSELL’S COLOR NOTATION VECIMS 2005

  12. MUNSELL’S COLOR NOTATION VECIMS 2005

  13. MUNSELL’S COLOR NOTATION VECIMS 2005

  14. MUNSELL’S COLOR NOTATION VECIMS 2005

  15. MUNSELL’S COLOR NOTATION VECIMS 2005

  16. MUNSELL’S COLOR NOTATION VECIMS 2005

  17. MUNSELL’S COLOR NOTATION VECIMS 2005

  18. MUNSELL’S COLOR NOTATION VECIMS 2005

  19. MUNSELL’S COLOR NOTATION VECIMS 2005

  20. MUNSELL’S COLOR NOTATION The Munsell colour solid Lightness VECIMS 2005

  21. MUNSELL’S COLOR NOTATION The Munsell colour solid Hue Lightness VECIMS 2005

  22. MUNSELL’S COLOR NOTATION The Munsell colour solid Hue Lightness Chroma VECIMS 2005

  23. MUNSELL’S RULE FOR COLOR Harmony VECIMS 2005

  24. THE COLOR HARMONIZER 2 10 9 8 7 6 5 4 3 2 1 0 VECIMS 2005

  25. THE COLOR HARMONIZER VECIMS 2005

  26. THE COLOR HARMONIZER Getting this right, by hand, is really difficult VECIMS 2005

  27. TYPES OF COLOR SCHEME • Abstract color schemes • beads on wireframes • (aka color molecules) Monochromatic Analogous • To make the color scheme concrete, • position the wireframe in the color space Complementary Split Complementary Triadic Oval Other? VECIMS 2005

  28. edge in1 in2 choose out in3 RS in4 ASAMPLE APPLICATION VECIMS 2005

  29. PRODUCING ACOLOR SCHEME Pictorial component Terminal 3 Size medium Importance medium Longevity Distinct components background Identical components wire Capture image characteristics • color strengthc = lightnesscx saturationc • small, shortlived, important items  high color strength • large, long-lived, unimportant items  low color strength VECIMS 2005

  30. PRODUCING ACOLOR SCHEME Capture image characteristics Synthesize a colour molecule ‘interatomic’ distances determined by spring-based optimization • Low color strength item • unimportant, • long-lived, • large Items identified as ‘distinct’ are kept separate VECIMS 2005

  31. PRODUCING ACOLOR SCHEME Capture image characteristics Synthesize a colour molecule Position and orient the molecule in the colour space VECIMS 2005

  32. PRODUCING ACOLOR SCHEME Capture image characteristics Synthesize a colour molecule Position and orient the molecule in the colour space VECIMS 2005

  33. THE CHROMOTOME Spin complete L*u*v* space Show sections through L*u*v* space Spin simple cutaway L*u*v* space Spin clipped cutaway L*u*v* space Chromotome prototype Harmoniser prototype VECIMS 2005

  34. GROUPED INTERFACE ITEMS • Grouping • treat many items as one • Benefits • fewer properties to define (if not automatic) • fewer interactions to specify • simpler optimisation (fewer items on wireframe) • More than one way to handle groups … VECIMS 2005

  35. PSEUDO-ATOM GROUPS • Simple Groups • treat many elements as a single ‘pseudo-atom’ • aggregate their size • don’t aggregate their importance, longevity or text properties • Simple to manage, optimise, define VECIMS 2005

  36. GROUPS WITH DISTINCT COLORINGS Subgroup with its own wireframe How is the wireframe oriented? Some orderings work better than others Menu buttons VECIMS 2005

  37. IMPLICATIONS FOR OPTIMISATION • Optimisation moves beads on wireframe • to balance colour strength and area • to ensure items are distinguishable • Local Optimisation • group C could be treated as a pseudo-atom • Global Optimisation • give subgroup C given an initial orientation • optimise it globally • ensures that c1-c5 aren’t too close to other atoms VECIMS 2005

  38. MULTI-LEVEL GROUPS • Groups with subgroups • groups indicate relationships • limit to how many groupings are meaningful • Groups with Subgroups • probably aren’t useful VECIMS 2005

  39. CONCLUSION • Adding Interface Element Groups • reduces image characterisation phase • users benefit • complicates the optimisation • more programming • allows for sub-color schemes • Raises many possibilities for future work … VECIMS 2005

  40. VECIMS 2005

  41. VECIMS 2005

More Related