1 / 71

Computational Thermodynamics

Computational Thermodynamics. 1. Outline. Theoretical background: thermodynamics of substitional solutions Introduction to thermodynamic database: element, specie, constitution, phase, function Introduction to Pandat software: phase diagram, line/ propert and point calculation

yeo-sexton
Download Presentation

Computational Thermodynamics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Computational Thermodynamics 1

  2. Outline • Theoretical background: thermodynamics of substitional solutions • Introduction to thermodynamic database: element, specie, constitution, phase, function • Introduction to Pandat software: phase diagram, line/propert and point calculation • Pandat and database. Writing a database for Cu-Ni system

  3. Theoretical background: thermodynamics of substitional solutions By definition, the phase is a homogeneous part of the space. The phase has the same structure, property and the phase is limited by phase boundary. Do you agreewith this definition? • We can see, that inside the glass • We have 4 different phases: • Solid phases: ice and straw • Liquid phase: pepsi-cola • Gas phase: CO2 • But, of course, we can guess, those phases • Are not in equilibrium!

  4. Theoretical background: thermodynamics of substitional solutions Let’s re-define a phase: The phase is a homogeneous part of the space and the phase is limited by a phase boundary

  5. Theoretical background: thermodynamics of substitional solutions A phase diagram is a type of chart used to show conditions at which thermodynamically distinct phases can occur at equilibrium.

  6. Theoretical background: thermodynamics of substitional solutions Condition for two phases to be in equilibrium

  7. Theoretical background: thermodynamics of substitional solutions ΔGα ΔμBα = ΔμBβ ΔGβ ΔμAα=ΔμAβ

  8. Theoretical background: thermodynamics of substitional solutions L β L+β α+L α α+β A B

  9. Theoretical background: thermodynamics of substitional solutions Substitutional solution A-B: atoms A can substitute atoms B and vice versa. Both phases (FCC and Liquid) are substitional solutions

  10. Theoretical background: thermodynamics of substitional solutions In case of Face Centered Cubic FCC_A1 structure and Cu – Nialloy, There are no restrictions and both types of atoms can occupied any position in crystal structure for whole concentration range. The Gibbs energy will, in this case, has 3 parts:

  11. Theoretical background: thermodynamics of substitional solutions

  12. Theoretical background: thermodynamics of substitional solutions Superposition of Gibbs energies of pure elements Gibbs energy mechanical mixing Excess Gibbs energy

  13. Theoretical background: thermodynamics of substitional solutions Redlich-Kisterpolynominal For i=0 and B=C=0 we just have a regular solution xAxBΩ Value ofidepends on thermodynamic properties of a given phase

  14. Theoretical background: thermodynamics of substitional solutions Let’s take a look at the Gibbs energy function Using Excel and the values 0A = 1A = 2A = 1000, 0B = 1B = 2B = 0C = 1C = 2C = 0, please make a graph of the Gibbs energy (separately for each L and their superposition)

  15. Introduction to thermodynamic database: element, specie, constitution, phase, function The thermodynamic database is a text file with extension TDB For editing the file one should not use a word processor (i.e. MS Word) due to invisible information added by the word processor. The easiest way to edit the database is to use Notepad or other simple editor (personally, I like to use the Edit Plus)

  16. Introduction to thermodynamic database: element, specie, constitution, phase, function • Format of the database: • Information about elements • Information about species (if applicable) • Functions • Parameters

  17. Introduction to thermodynamic database: element, specie, constitution, phase, function Se-Te database (part)

  18. Introduction to thermodynamic database: element, specie, constitution, phase, function $ comment line $ Database file written 2010-10-28 $ From database: User data 2010.10.28 ELEMENT /- ELECTRON_GAS 0.0000E+00 0.0000E+00 0.0000E+00! ELEMENT VA VACUUM 0.0000E+00 0.0000E+00 0.0000E+00! ELEMENT SE HEXAGONAL_A8 7.8960E+01 5.5145E+03 4.1966E+01! ELEMENT TE HEXAGONAL_A8 1.2760E+02 6.1212E+03 4.9497E+01! Enthalpy and entropy difference between 0 and 298.15 K for the element in SI units. If they are unknown, the values can be set to zero. Atomic mass ELEMENTSYMBOLCrystal structure SER ELEMENT [element name]*2 [ref. state]*24 [mass] [H298] [S298] !

  19. Introduction to thermodynamic database: element, specie, constitution, phase, function H298 and S298 - the enthalpy and entropy difference between 0 and 298.15 K for the element in SI units. All these information (reference state, H298 and S298) precisely define the so-called SER (Stable Element Reference State).

  20. Introduction to thermodynamic database: element, specie, constitution, phase, function SPECIES [species name]*24 [stoichiometric formula] ! This keyword defines species in the data structure. Every species name (maximum 24 characters) must be unique. The species are built from the already defined set of elements in the stoichiometric formula. The stoichiometric formula is written with a simplified chemical notation, in which the chemical elements should always be given in UPPER-cases and in any preferred order, and their stoichiometric coefficients can be written in either real numerical factor or integer digits. It is important that the numerical factor of 1 cannot be left out. SPECIES AL2O3 AL2O3 ! SPECIES Silica SI1O2 ! SPECIES NaSb_6OH NA1SB1O6H6 ! SPECIES FE+2 FE/+2 ! SPECIES SB-3 SB/-3 ! SPECIES AlCl2/3 AL.33333CL.666667 !

  21. Introduction to thermodynamic database: element, specie, constitution, phase, function FUNCTION [function name]*8 [lowest temp. limit] [expression 1]; [upper temp. limit 2] Y [expression 2]; [upper temp. limit 1] Y [expression 3]; [upper temp. limit 2] Y .......... ; ..... Y [expression n-1]; [upper temp. limit n-1] Y [expression n]; [upper temp. limit n] N {Ref. Index} !

  22. Introduction to thermodynamic database: element, specie, constitution, phase, function TYPE_DEFINITION % SEQ *! DEFINE_SYSTEM_DEFAULT ELEMENT 2 ! DEFAULT_COMMAND DEF_SYS_ELEMENT VA /- ! PHASE HEXAGONAL_A8 % 1 1.0 ! CONSTITUENT HEXAGONAL_A8 :SE,TE : ! PARAMETER G(HEXAGONAL_A8,SE;0) 2.98150E+02 +GHSERSE#; 1.00000E+03 N REF0 ! PARAMETER G(HEXAGONAL_A8,TE;0) 2.98150E+02 +GHSERTE#; 1.60000E+03 N REF0 ! PARAMETER G(HEXAGONAL_A8,SE,TE;0) 2.98150E+02 -9.9498291E+02 +2.7357836E+00*T; 1.60000E+03 N REF0 !

  23. Introduction to thermodynamic database: element, specie, constitution, phase, function TYPE_DEFINITION [data-type code]*1 [secondary keyword with parameters] ! This keyword couples phases to an action performed by the TDB module when the TDB command GET_DATA is executed. The available secondary keywords and associated parameters in syntax for TYPE_DEFINITION are: SEQ [filename] RND# [filename] GES [valid GES command with parameters] POLY [valid POLY command with parameters] TDB [valid TDB command with parameters] IF [conditional statement] THEN [keyword with parameters] AFTER [valid GES command with parameters]

  24. Introduction to thermodynamic database: element, specie, constitution, phase, function The secondary keyword SEQ specifies a sequential file that stores parameters belonging to the phases using the associated data type code (which is defined by this TYPE_DEFINTION keyword). A special case where the filename is given as an asterisk, *, implies that the database definition file also acts as a sequential data storage file. This case makes it possible to have a single file for a small database, which is especially suited for personal databases.

  25. Introduction to thermodynamic database: element, specie, constitution, phase, function DEFINE_SYSTEM_DEFAULT [keyword] {G-ref. type index} ! Thermocalcsoftware! This keyword sets the default value to ELEMENT or SPECIES in the TDB command DEFINE_SYSTEM. For a substance database, it might be appropriate to have ELEMENT as default value whereas a large solution database can benefit from having SPECIES as default value. A proper default value is beneficial for a beginner, but an advanced user will probably use the TDB commands DEFINE_ELEMENT and DEFINE_SPECIES to override the default value. {G-ref. type index} is an integer indicating the reference state type for an element when entering and listing data in the GES module. The following lists legal numbers and their corresponding meaning (the reference state type for an element): 1 ⇒ symbol: G 2 ⇒ symbol: H298 3 ⇒ symbol: H0

  26. Introduction to thermodynamic database: element, specie, constitution, phase, function DEFAULT_COMMAND [secondary keyword and parameters] ! Thermocalc software The keyword specifies commands to be executed by the TDB module at database initialization. The syntax of the available commands is currently not the same as the user available TDB commands but the actions are similar. The available secondary keywords and parameters in syntax for DEFAULT_COMMAND are, DEFINE_SYSTEM_ELEMENT [element names] DEFINE_SYSTEM_SPECIES [species names] DEFINE_SYSTEM_CONSTITUENT [phase] [sublattice] [species] REJECT_SYSTEM_ELEMENT [element names] REJECT_SYSTEM_SPECIES [species names] REJECT_SYSTEM_CONSTITUENT [phase] [sublattice] [species] REJECT_PHASE [phase names] RESTORE_PHASE [phase names]

  27. Introduction to thermodynamic database: element, specie, constitution, phase, function PHASE [phase name]*24 [data-type code]*8 [numb. subl.] [sites in subl. 1] [sites in subl. 2] etc... {auxiliary text string} ! This keyword defines a phase and its properties (except for what species are allowed to enter it and for its thermodynamic parameters). The data-type code consists of 1 to 8 characters where each character must stand for connecting to a specific database file The data entries [numb. subl.] [sites in subl. 1] [sites in subl. 2] etc... specify the total number of sublattices (always as an integer digit) and the sites (i.e., stoichiometric coefficients) of each of the sublattices (given in either integer digits or real numerical factors) for the phase. Optionally, an auxiliary text string (maximum 78 characters) may be given after the last [sites in sublattice #] but before the exclamation mark “!”; see examples below. This string will show up in connection with the phase name in some listings within the TDB module.

  28. Introduction to thermodynamic database: element, specie, constitution, phase, function PHASE GAS:G % 1 1.0 ! PHASE LIQUID:L %ZCDQ 2 1.0 1.0 > Metallic liquid solution, modelled by CEF Model. ! PHASE IONIC-LIQ:Y %ZCDQ 2 1.0 1.0 > Ionic liquid solution, modelled by Ionic Two-Sublattice Model. ! PHASE SPINEL:I %ZA 4 1 2 2 4 > Complex Spinel Solution, by CEF model with ionic constraints. ! PHASE M23C6 % 3 20.0 3.0 6.0 ! PHASE FCC_A1 %&A 2 1 1 > Disordered FCC phase; also as MX carbides/nitrides. ! PHASE FCC_L10 %&AX 3 0.75 0.25 1 > Ordered FCC phase, modelled by 2-Sublattice Model for Ordering. ! PHASE FCC_L12:F %&AX 5 0.25 0.25 0.25 0.25 1.0 > Ordered FCC phase, modelled by 4-Sublattice Model for Ordering. ! PHASE AQUEOUS:A %HIJMR 1 1.0 > Aqueous Solution: using the Complete Revised HKF Model. !

  29. Introduction to thermodynamic database: element, specie, constitution, phase, function Legal GES phase-type codes are (Thermocalc software): G ⇒ Bit set for a gaseous mixture phase. A ⇒ Bit set for an aqueous solution phase. Y ⇒ Bit set for an ionic liquid solution phase (that is specially treated by the Ionic Two-Sublattice Liquid Model). L ⇒ Bit set for a liquid solution phase [but not A (aqueous) or Y (ionic liquid)]. I ⇒ Bit set for a phase with charged species [but not G (gaseous), A (aqueous) or Y (ionic liquid)]. F ⇒ Bit set for an ordered FCC or HCP solution phase with 4 substitutional sublattices (additionally, such a phase can also have an interstitial sublattice). B ⇒ Bit set for an ordered BCC solution phase with 4 substitutional sublattices (additionally, such a phase can also have an interstitial sublattice).

  30. Introduction to thermodynamic database: element, specie, constitution, phase, function CONSTITUENT [phase name]*24 [constituent description]*2000 ! This keyword (and the ADD_CONSTITUENT keyword for large solution phase) defines the phase-constitution as a list of constituents (for a substitutional phase with no sublattice) or of constituent arrays (for a sublattice phase).

  31. Introduction to thermodynamic database: element, specie, constitution, phase, function PARAMETER [GES parameter name] [lowest temp. limit] [expression 1]; [upper temp. limit 1] Y [expression 2]; [upper temp. limit 2] Y [expression 3]; [upper temp. limit 2] Y .......... ; ..... Y [expression n-1]; [upper temp. limit n-1] Y [expression n]; [upper temp. limit n] N {Ref. Index} ! GES parameters GStandard energy parameter (Gibbs energy of formation); LExcess energy parameter (Gibbs energy of interaction); TCCurie temperature for magnetic ordering; BMAGNor BM Bohr magneton number for magnetic ordering

  32. Introduction to Pandat software: phase diagram, line/property and point calculation

  33. Introduction to Pandat software: phase diagram, line/property and point calculation

  34. Introduction to Pandat software: phase diagram, line/property and point calculation

  35. Introduction to Pandat software: phase diagram, line/property and point calculation Program Files->Computherm->Pandat 2012 Demo->Pandat 2012 Examples-> PanPhaseDiagram->Line

  36. Introduction to Pandat software: phase diagram, line/property and point calculation

  37. Introduction to Pandat software: phase diagram, line/property and point calculation

  38. Introduction to Pandat software: phase diagram, line/property and point calculation Right-click on a database

  39. Introduction to Pandat software: phase diagram, line/property and point calculation

  40. Introduction to Pandat software: phase diagram, line/property and point calculation Line calculation Point calculation Phase diagram calculation Let’ start from phase diagram calculation

  41. Introduction to Pandat software: phase diagram, line/property and point calculation

  42. Introduction to Pandat software: phase diagram, line/property and point calculation

  43. Introduction to Pandat software: phase diagram, line/property and point calculation

  44. Introduction to Pandat software: phase diagram, line/property and point calculation

  45. Introduction to Pandat software: phase diagram, line/property and point calculation

  46. Introduction to Pandat software: phase diagram, line/property and point calculation

  47. Introduction to Pandat software: phase diagram, line/property and point calculation Select Pan mode Edit Line/Arrow Legend Zoom Text Label

  48. Introduction to Pandat software: phase diagram, line/property and point calculation Double click

  49. Introduction to Pandat software: phase diagram, line/property and point calculation

  50. Introduction to Pandat software: phase diagram, line/property and point calculation

More Related