1 / 36

Nucleic Acid Biotechnology Techniques

Nucleic Acid Biotechnology Techniques. Chapter 13. Separation techniques of Nucleic Acids. Gel electrophoresis -used to separate nucleic acids based on charge and size. Proteins – SDS PAGE Done in an electric field. Detection of Nucleic Acids.

zarifa
Download Presentation

Nucleic Acid Biotechnology Techniques

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nucleic Acid Biotechnology Techniques Chapter 13

  2. Separation techniques of Nucleic Acids • Gel electrophoresis -used to separate nucleic acids based on charge and size. • Proteins – SDS PAGE • Done in an electric field

  3. Detection of Nucleic Acids • Radioactive labeling of sample used to detect products • Label or tag allows visualization • DNA undergoes reaction that incorporates radioactive isotope into the DNA • Autoradiography used to visualize image that has been exposed to radiolabeledoligonucleotides

  4. Detection of Nucleic Acids • Fluorescence • Ethidium bromide intercalatesbetween bases • Under UV light glows orange

  5. Restriction Endonucleases • Nucleases- catalyze the hydrolysis of the phosphodiester backbone of nucleic acids - Endonuclease: cleavage in the middle of the chain - Exonuclease: cleavage from the ends of the molecule • Restriction Endonucleases -Have a crucial role in development of recombinant DNA technology • Bacteriophages -viruses that infect bacteria - Led to discovery of restriction enzymes

  6. Methylation of DNA

  7. Restriction Endonucleases • Restriction endonucleases(RE) hydrolyzes only a specific bond of a specific sequence in DNA • Sequences recognized by RE read the same from left to right as from right to left, known as palindrome • Sticky and Blunt ends

  8. Resealing by DNA ligase • Sticky ends are joined by hydrogen bonding between complementary bases. • Ligases reseal ends

  9. Recombinant DNA Technology • Recombinant/Chimeric DNA - DNA molecules that contain covalently linked segments derived from 2 or more DNA sources • Sticky Ends can be used to construct Recombinant DNA • DNA Ligase- seals nicks in the covalent structure

  10. What is Cloning? • Plasmid- small circular DNA that is not part of the main circular DNA chromosome of the bacterium. • Cloning- The process of making identical copies of DNA

  11. Transformation • Bacteria take up recombinant DNA • Heat shock method • Electroporation • Transformed bacteria – scaled up

  12. pBR322 • One of the first plasmids used for cloning – E.coli • Foreign DNA must be inserted at unique restriction sites • Confers resistance to two antibiotics – Tetracycline and ampicillin

  13. Plasmids • As the technology to design plasmids improved, regions were created that had many different restriction sites in a small place • This region is known as a multiple cloning site (MCS)or polylinker

  14. Selection • How do we know which bacteria takes up the desired plasmid? • Selection- Each plasmid chosen for cloning has a selectable marker that indicates that the growing bacterial colonies contain the plasmid of interest

  15. Clone Selection with Blue/White Screening • Basis for selection • pUC plasmids contain lacZgene • lacZ gene codes for the -subunit of -galactosidase, which cleaves disaccharides • This procedure helps with selection

  16. Cloning Summary • Cloning refers to creating identical populations • DNA can be combined by using restriction enzymes + Ligases • The target DNA sequence is carried in some type of vector/plasmid • The target plasmid is inserted into host organism • Organisms that carry the target DNA are identified through a process called selection

  17. Genetic Engineering • When an organism is intentionally altered at the molecular level to exhibit different traits - genetically engineered • One focus of genetic engineering has been gene therapy -where cells of specific tissues in a living person are altered in a way that alleviates the affects of a disease

  18. Protein Expression Vectors • Plasmid vectors pBR322 and pUC are cloning vectors • Vectors are used to insert foreign DNA and amplify it • If we want to produce protein from the foreign DNA - Expression vectors

  19. What is an Expression Vector? • Have many attributes as cloning vector: - The origin of replication • A multiple cloning site • At least one selectable marker

  20. What is an Expression Vector? • Must be able to be transcribed by the genetic machinery of the bacteria where it is transformed • Must have a transcription initiation and termination sequence • Ribosomal binding site-translation

  21. Producing Large Numbers of Transformed Cells

  22. DNA libraries • All the DNA of an organism - clone it in chunks of reasonable size • The result of this is a DNA library • Several steps involved in construction of the library

  23. How do we find the piece of DNA we want in a library? • Genomic Library Screening • A nitrocellulose disc is put on the dish and removed • Disc treated with denaturing agent to unwind DNA • DNA is permanently fixed to disc by treatment with heat or UV light

  24. How do we find the piece of DNA we want in a library? • Expose DNA on disc to a solution that contains single stranded complementary DNA or RNA (radioactive probing) • Wash the disc • Identify the colonies

  25. Making cDNA library • RNA of interest is used as template for the synthesis of complementary DNA (cDNA) • Reaction catalyzed by reverse transcriptase • cDNA is incorporated into vector • cDNA library construction is identical to genomic DNA library

  26. Summary • A DNA library is a collection of clones of an entire genome • The genome is digested with restriction enzymes and the pieces are cloned into vectors • A cDNA library is constructed by using reverse transcriptase to make DNA from the mRNA in a cell. This cDNA is then used to construct a library similar to a genomic DNA library

  27. Polymerase Chain Reaction • It is possible to increase the amount of a given DNA many times over without cloning the DNA • Any chosen DNA can be amplified, and it does not need to be separated from the rest of the DNA in a sample

  28. DNA fingerprinting • DNA samples can be studied and compared by DNA fingerprinting • DNA is digested with restriction enzymes and then run on an agarose gel • When soaked in ethidium bromide – can be seen directly under UV light

  29. Southern blotting • If greater sensitivity needed or if number of fragments would be too great to distinguish the bands, technique can be modified to show only selected DNA sequences

  30. Sequencing • DNA can be sequenced by using several techniques, the most common being the chain termination method • Dideoxy nucleotides are used to terminate DNA synthesis. Multiple reactions are run with different dideoxy nucleotide in each reaction mix • The reactions produce a series of DNA fragments of different length that can be run on a gel and the sequence determined by tracking the different length fragments in the lanes with the four different dideoxy nucleotides

  31. Fig. 17.11

  32. Genomics and Proteomics • Knowing the full DNA sequence of the human genome allows for the investigation for the causes of disease in a way that has not been possible until now • The proteome is a protein version of a genome • Proteomics is the study of interactions among all the proteins in a cell

  33. Open book take home quiz for 30 points • 1. Name the two kinds of gels used in electrophoresis and what molecules do those separate. Explain the original charges of those molecules and in which direction do they move in an electric field. In other words explain the effect of charge and size on the biomolecules. • 2. What is methylation of DNA in Bacteria? • 3. Write names of any two enzymes and the name of the bacteria from which it has been extracted. Explain how these enzymes have been named or their naming procedures. • 4. Draw a recombinant DNA plasmid showing the sites of BamHI and HindIII along with same RE sites on your DNA of interest. • 5. Explain the whole procedure of PCR along with factors required to run a PCR reaction. • 6. Explain the procedure of RNA interference. • 7. Explain the Agrobacterium transformation done in plants.

  34. This project is funded by a grant awarded under the President’s Community Based Job Training Grant as implemented by the U.S. Department of Labor’s Employment and Training Administration (CB-15-162-06-60). NCC is an equal opportunity employer and does not discriminate on the following basis: •  against any individual in the United States, on the basis of race, color, religion, sex, national origin, age disability, political affiliation or belief; and •  against any beneficiary of programs financially assisted under Title I of the Workforce Investment Act of 1998 (WIA), on the basis of the beneficiary’s citizenship/status as a lawfully admitted immigrant authorized to work in the United States, or his or her participation in any WIA Title I-financially assisted program or activity.

More Related