1 / 28

crystallization behavior

this present a crystallization behavior for polymeric materials

Download Presentation

crystallization behavior

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. T T T Th h h he e e er r r rm M M M Me e e el l l lt t t ti i i in n n ng g g g a a a an n n nd d d d t t t th h h he e e e G G G Gl l l la a a as s s ss s s s T T T Tr r r ra a a an n n ns s s si i i it t t ti i i io o o on n n n m m ma a a al l l l T T T Tr r r ra a a an n n ns s s si i i it t t ti i i io o o on n n ns s s s: : : : C C C Cr r r ry y y ys s s st t t ta a a al l l ll l l li i i iz z z za a a at t t ti i i io o o on n n n, , , , • This lecture: Crystallization and Melting • Next Lecture: The Glass Transition Temperature Today: •Why do polymers crystallize in a chain folded fashion? • Why do polymers melt over a range of temperatures? • What are the factors that affect the Tm? Chapter 8 in CD (Polymer Science and Engineering)

  2. T T T Th h h he e e er r r rm m m ma a a al l l l T T T Tr r r ra a a an n n ns s s si i i it t t ti i i io o o on n n ns s s s Temperature Temperature Viscoelastic Viscoelastic liquid liquid Glass Glass Transition Transition Crystallization Crystallization Melting Melting Semi-crystalline Semi-crystalline Solid Solid Glassy Solid Glassy Solid

  3. C C C Cr r r ry y y ys s s st t t ta a a al l l ll l l li i i iz z z za a a at t t ti i i io o o on n n n a a a an n n nd d d d t t t th h h he e e e G G G Gl l l la a a as s s ss s s s T T T Tr r r ra a a an n n ns s s si i i it t t ti i i io o o on n n n Volume Cool Liquid or Melt Glassy Solid Crystalline Solid Temperature Tc Tg

  4. K K K Ki i i in n n ne e e et t t ti i i ic c c cs s s s, , , , C C C Cr r r ry y y ys s s st t t ta a a al l l ll l l li i i iz z z za a a at t t ti i i io o o on n n n a a a an n n nd d d d t t t th h h he e e e G G G Gl l l la a a as s s ss s s s T T T Tr r r ra a a an n n ns s s si i i it t t ti i i io o o on n n n Volume Cool Quickly Volume Cool Quickly Liquid or Melt Glassy Solid Cool Slowly Does not Crystallize ! Temperature Temperature Tg Tg Tg Crystallizable Crystallizable Polymer Polymer Non- Non-Crystallizable Crystallizable Polymer Polymer

  5. P P P Po o o ol l l ly y y ym m m me e e er r r r C C C Cr r r ry y y ys s s st t t ta a a al l l ll l l li i i iz z z za a a at t t ti i i io o o on n n n WHAT DO WE KNOW FROM EXPERIMENTAL OBSERVATION ? • Crystallization occurs relatively slowly • At high undercoolings • And results in the formation of chain folded lamellae

  6. P P P Po o o ol l l ly y y ym m m me e e er r r r C C C Cr r r ry y y ys s s st t t ta a a al l l ll l l li i i iz z z za a a at t t ti i i io o o on n n n SMALL MOLECULES Cool Specific Volume What is undercooling ? Melt Melt Heat Temp Tc T m POLYMERS Cool Specific Volume Semi-crystalline Semi-crystalline Solid Solid Heat Tc T Temp m

  7. C C C Cr r r ry y y ys s s st t t ta a a al l l ll l l li i i iz z z za a a at t t ti i i io o o on n n n K K K Ki i i in n n ne e e et t t ti i i ic c c cs s s s G G G Ge e e en n n ne e e er r r ra a a al l l l F F F Fe e e ea a a at t t tu u u ur r r re e e es s s s Degree of Crystallinity Secondary Secondary • Induction period - formation of primary nuclei Crystallization Crystallization • Primary crystallization - a period of fast spherulitic growth Primary Primary Crystallization Crystallization • Secondary crystallization - a period of slower crystallization that occurs once the spherulites have impinged on one another Induction Period Induction Period (Nucleation Step) (Nucleation Step) Time

  8. T T T Th h h he e e er r r rm m m mo o o od d d dy y y yn n n na a a am m m mi i i ic c c c C C C Co o o on n n ns s s si i i id d d de e e er r r ra a a at t t ti i i io o o on n n ns s s s The free energy of this primary nucleus is given by ∆ ∆ ∆ ∆Gcryst= (4xl)σ σ σ σ +(2x2)σ σ σ σe-(x 2l)∆ ∆ ∆ ∆g • The last term represents the free energy that we would obtain if all the segments were in the bulk. • The first two terms are the excess free energy that must be “added in” to account for those segments at the surface. l σ σ σ σe σ σ σ σ x x

  9. E E E Ex x x xt t t te e e en n n nd d d de e e ed d d d C C C Ch h h ha a a ai i i in n n n C C C Cr r r ry y y ys s s st t t ta a a al l l ls s s s a a a an n n nd d d d A A A An n n nn n n ne e e ea a a al l l li i i in n n ng g g g Thermodynamically most stable form Courtesy of I.R. Harrison, Penn State Crystals irreversibly thicken on annealing - so they would like to get to the extended form

  10. C C C Cr r r ri i i it t t ti i i ic c c ca a a al l l l N N N Nu u u uc c c cl l l le e e eu u u us s s s S S S Si i i iz z z ze e e e So why don‛t polymers crystallize in the extended chain form to begin with? To answer this let‛s calculate the critical nucleus size. 0 T = Tm m

  11. C C C Cr r r ri i i it t t ti i i ic c c ca a a al l l l N N N Nu u u uc c c cl l l le e e eu u u us s s s S S S Si i i iz z z ze e e e The critical nucleus size is given by the values of l and x that minimize ∆Gcryst; ∂∆G ∂l =∂∆G ∂x = 0 Solving the two simultaneous equations Nucleation Nucleation at temperature T at temperature T ∗=4σe l ∆g

  12. C C C Cr r r ri i i it t t ti i i ic c c ca a a al l l l N N N Nu u u uc c c cl l l le e e eu u u us s s s S S S Si i i iz z z ze e e e Substituting for ∆g; 0 ∗=4σeT m ∆hf∆T l l l* * where ∆T is the undercooling; 0− Tc ∆T = Tm Note the inverse dependence of fold period on ∆T. Critical Nucleus Size Critical Nucleus Size Also, at the equilibrium melting temperature, Tc = Tm0, and only lamellae with infinite fold periods could grow.

  13. T T T Th h h he e e e R R R Ra a a at t t te e e e o o o of f f f P P P Pr r r ri i i im m m ma a a ar r r ry y y y N N N Nu u u uc c c cl l l le e e ea a a at t t ti i i io o o on n n n 0 0 4σeT m ( )=4σeT m ∆hf∆T An expression for the rate of nucleation can also be obtained: ∗= l ∆hf Tm0− T l* l* vnuc vnuc 2 For l* large,∆T has to be small 0 2σeTm [ T ] νnuc~exp−const.σ 2kT 2 c∆ [ ] ∆ h At small ∆T Vnuc is small f Note that the rate of nucleation is vanishingly small at low undercoolings. Only nuclei with relatively short fold periods (compared to chain length) form at an appreciable rate. ∆ ∆ ∆ ∆T ∆ ∆ ∆ ∆T

  14. P P P Pr r r ri i i im m m ma a a ar r r ry y y y C C C Cr r r ry y y ys s s st t t ta a a al l l ll l l li i i iz z z za a a at t t ti i i io o o on n n n: : : : • Once a nucleus has been formed growth is predominantly in the lateral direction. • There is a considerable increase in the fold period behind the lamellar front during crystallization from the melt Crystallization Crystallization

  15. T T T Th h h he e e e C C C Cr r r ry y y ys s s st t t ta a a al l l ll l l li i i in n n ne e e e M M M Me e e el l l lt t t ti i i in n n ng g g g T T T Te e e em m m mp p p pe e e er r r ra a a at t t tu u u ur r r re e e e Semi-crystalline Semi-crystalline Solid Solid Heat Heat Melt Melt

  16. C C C Ch h h ha a a ar r r ra a a ac c c ct t t te e e er r r ri i i is s s st t t ti i i ic c c cs s s s: : : : M M M Me e e el l l lt t t ti i i in n n ng g g g T T T Te e e em m m mp p p pe e e er r r ra a a at t t tu u u ur r r re e e es s s s Temperature (0 C) 40 20 Melting is Complete 0 Melting Starts Crystallization -20 -40 -50 -50 -40 -30 -20 -10 0 10 Temperature of Crystallization

  17. T T T Th h h he e e e M o o o of f f f P P P Po o o ol l l ly y y ym M M Me e e el l l lt t t ti i i in n n ng g g g T T T Te e e em m m me e e er r r r C C C Cr r r ry y y ys s s st t t ta a a al l l ls s s s m m mp p p pe e e er r r ra a a at t t tu u u ur r r re e e e       01−2σ e  Tm = T m l∆hf  Temperature Temperature T Tm m0 0 l l

  18. F F F Fa a a ac c c ct t t to o o or r r rs s s s t t t th h h ha a a at t t t A A A Af f f ff f f fe e e ec c c ct t t t t t t th h h he e e e M T T T Te e e em m m mp p p pe e e er r r ra a a at t t tu u u ur r r re e e e o o o of f f f P P P Po o o ol l l ly y y ym M M Me e e el l l lt t t ti i i in n n ng g g g m m me e e er r r r C C C Cr r r ry y y ys s s st t t ta a a al l l ls s s s Why? CH2 CH2 CH2 - - - - -CH2 T Tm -CH2 -CH2 m ~ 135 ~ 1350 0C C H - - H - N- - N O - = C- - - C =O ~ 3700 0C C T Tm m ~ 370

  19. T T T Th h h he e e e E E E Ef f f ff f f fe e e ec c c ct t t t o o o of f f f C C C Ch h h he e e em m m mi i i ic c c ca a a al l l l S S S St t t tr r r ru u u uc c c ct t t tu u u ur r r re e e e ∆ ∆ ∆ ∆Gf = ∆ ∆ ∆ ∆Hf - T∆ ∆ ∆ ∆Sf And at Equilibrium ∆ ∆ ∆ ∆Gf = 0 0 0 0 Τ Τ Τ Τm = ∆ ∆ ∆ ∆Hf /∆ ∆ ∆ ∆Sf Hence Equilibrium Equilibrium at temperature T at temperature Tm m Τ Τ Τ Τm = ∆ ∆ ∆ ∆Hf /∆ ∆ ∆ ∆Sf The subscript “f” stands for fusion

  20. I I I In n n nt t t te e e er r r rm I I I In n n nt t t te e e er r r ra a a ac c c ct t t ti i i io o o on n n ns s s s m m mo o o ol l l le e e ec c c cu u u ul l l la a a ar r r r CH2 CH2 CH2 - - - - -CH2 -CH2 -CH2 T Tm m ~ 135 ~ 1350 0C C O = CH2 CH2 C N - - H - - - - - -CH2 -CH2 CH2 T Tm m ~ 265 ~ 2650 0C C Is this Is this nylon 6 nylon 6 or or nylon 66 nylon 66 ? ?

  21. T T T Th h h he e e e E E E Ef f f ff f f fe e e ec c c ct t t t o o o of f f f I I I In n n nt t t te e e er r r rm I I I In n n nt t t te e e er r r ra a a ac c c ct t t ti i i io o o on n n ns s s s m m mo o o ol l l le e e ec c c cu u u ul l l la a a ar r r r OK, now it‛s your turn ! Supposing you could synthesize such beasts, would you expect syndiotactic poly(propylene) or syndiotactic PVC to have the higher melting point? - CH2 - CH - A. - Cl - CH2 - CH - B. - CH3

  22. E E E En n n nt t t tr r r ro o o op p p py y y y a a a an n n nd d d d C C C Ch h h ha a a ai i i in n n n F F F Fl l l le e e ex x x xi i i ib b b bi i i il l l li i i it t t ty y y y Flexible Flexible Τ Τ Τ Τm = ∆ ∆ ∆ ∆Hf /∆ ∆ ∆ ∆Sf Stiff Stiff

  23. E E E En n n nt t t tr r r ro o o op p p py y y y a a a an n n nd d d d C C C Ch h h ha a a ai i i in n n n F F F Fl l l le e e ex x x xi i i ib b b bi i i il l l li i i it t t ty y y y ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆S Sf f S = k lnΩ ∆Sf = k (lnΩmelt - lnΩcrystal ) = Large

  24. C C C Co o o on n n nf f f fo o o or r r rm t t t th h h he e e e M m m ma a a at t t ti i i io o o on n n na a a al l l l E E E En n n nt t t tr r r ro o o op p p py y y y a a a an n n nd d d d M M Me e e el l l lt t t ti i i in n n ng g g g P P P Po o o oi i i in n n nt t t t = ∆ ∆H Hf f / / ∆ ∆S Sf f T Tm m = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆S Sf f = k ( = k (ln lnΩ Ω Ω Ω Ω Ω Ω Ωmelt = Small = Small - ln lnΩ Ω Ω Ω Ω Ω Ω Ωcrystal crystal) ) melt -

  25. E E E En n n nt t t tr r r ro o o op p p py y y y a a a an n n nd d d d t t t th h h he e e e M M M Me e e el l l lt t t ti i i in n n ng g g g P P P Po o o oi i i in n n nt t t t - CH2 - CH2 - Polyethylene Polyethylene T Tm m ~ 135 ~ 1350 0C C - CH2 - CH2 - O - Poly (ethylene oxide) Poly (ethylene oxide) T Tm m ~ 65 ~ 650 0C C - CH2 - CH2 - - T Tm m ~ 400 ~ 4000 0C C Poly (p- Poly (p-xylene xylene) )

  26. E E E En n n nt t t tr r r ro o o op p p py y y y a a a an n n nd d d d t t t th h h he e e e M M M Me e e el l l lt t t ti i i in n n ng g g g P P P Po o o oi i i in n n nt t t t - CH2 - CH2 - Polyethylene Polyethylene T Tm m ~ 135 ~ 1350 0C C - CH2 - CH - - T Tm m ~ ? ~ ? CH3 Polypropylene Isotactic Isotactic Polypropylene - CH2 - CH - - m ~ ? ~ ? T Tm Isotactic Isotactic Polystyrene Polystyrene

  27. T T T Th h h he e e e E E E Ef f f ff f f fe e e ec c c ct t t t o o o of f f f D D D Di i i il l l lu u u ue e e en n n nt t t ts s s s ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆S S1 1 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆S S2 2 > > ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆S S1 1 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆S S2 2

  28. T T T Th h h he e e e E E E Ef f f ff f f fe e e ec c c ct t t t o o o of f f f C C C Co o o op p p po o o ol l l ly y y ym a a a an n n nd d d d M M M Mo o o ol l l le e e ec c c cu u u ul l l la a a ar r r r W m m me e e er r r ri i i iz z z za a a at t t ti i i io o o on n n n W W We e e ei i i ig g g gh h h ht t t t

More Related