1 / 24

1 (fie03 – 11/06/03)

The Capstone Senior Design Course: An Initiative in Partnering with Industry Dewey Rundus Kenneth J. Christensen Department of Computer Science and Engineering University of South Florida Tampa, Florida 33620 { rundus, christen } @csee.usf.edu 1 (fie03.ppt – 11/06/03) Topics

Ava
Download Presentation

1 (fie03 – 11/06/03)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Capstone Senior Design Course: An Initiative in Partnering with Industry Dewey Rundus Kenneth J. Christensen Department of Computer Science and Engineering University of South Florida Tampa, Florida 33620 {rundus,christen}@csee.usf.edu 1 (fie03.ppt – 11/06/03)

  2. Topics • Introduction and background • Role in ABET EC 2000 • Course design and implementation • Examples of projects • Evaluation of the course • Summary and future work This material was partially presented at the ASEE Southeast Section Meeting in Macon, Georgia in April 2003. 2

  3. Introduction and background • Our department – Computer Science and Engineering • BS in Computer Engineering (ABET accredited) • BS in Computer Science (ABET accredited) • BS in Information Systems • MS and PhD programs • 18 faculty members • Research funding from NSF, Navy, other federal agencies • Well rated PhD program • Department enrollment is about… • 400 (!) undergraduate students • 200 graduate students (50 are PhD) 6

  4. Introduction and background continued • Senior capstone design course (CIS 4910) • Part of most engineering and computer science curriculums • Purpose is to… • Integrate knowledge • Produce a useful artifact (design and build) • Many models for a capstone course… • Internal - individual or team-based • Students select project • Faculty members select project • Industry - individual or team-based • Providing projects and/or support 3

  5. Introduction and background continued • Growing trend towards industry-based project courses • One motivation is to prepare students for industry careers Small sample 4

  6. Introduction and background continued • Example #1 – UF IPPD program (college-wide) • Selective program (top 25%), interdisciplinary, team-based • Example #2 – NCSU Senior Design center (CS dept) • Design center, catalog of projects, emphasis on “soft” topics • Example #3 – UIUC “Corporate Connective” initiative (ECE dept) 5

  7. Role in ABET EC 2000 • Design is a major concern of ABET accreditation visits • Integrated throughout program • Capstone course can be be a major focus of a visit • EC 2000 criterion 3 (a thru k) outcomes involve design • EC 2000 criterion 4 directly addresses design Our view… a capstone course is the cornerstone of the professional requirements of a quality undergraduate engineering curriculum. 7

  8. Role in ABET EC 2000 continued • EC 2000 criterion 3 (subparts that apply to a capstone course)… • (a) apply knowledge of mathematics, science, and engineering; • (c) design a system, component, or process to meet desired needs; • (d) function on multi-disciplinary teams; • (e) identify, formulate, and solve engineering problems; • (g) communicate effectively; and • (k) use the techniques, skills, and modern engineering tools • necessary for engineering practice. 8

  9. Role in ABET EC 2000 continued • EC 2000 criterion 4… • “…engineering standards and realistic constraints that include most • of the following considerations: economic; environmental; • sustainability; manufacturability; ethical; health and safety; • social; and political.” 9

  10. Course Design and Implementation • History of capstone course in our department • Individually selected projects – 1987 to 2000 • Industry-based team projects – 2001 to present • Individual projects are good… • Students with a strong idea are driven to do well • Only modest overhead for department • Individual projects are bad… • Little topic constraint • Students without ideas would search aimlessly • No team-work experience • Sometimes very little supervision • No recognition of faculty effort • High variability in project quality 10

  11. Course Design and Implementation continued • Our course objectives… • 1) Students will select an industry-contributed hardware or • software project and form teams of size four to six based. • 2) Student teams will follow a formal development process. • 3) Students will complete requirements, spec, and test plan. • 4) Students will implement their design. • 5) Students will test the resulting system. • 6) Students will produce a written final report, poster, press • Release, final oral presentation, and project demonstration. • 7) Students will experience all phases of project development and • thereby will gain an appreciation. 11

  12. Course Design and Implementation continued • We approach central-Florida companies that hire our graduates • “Sell” the course based on two benefits to company 1) A first look at graduating class (recruiting) 2) An opportunity to have a back-burner problem solved A presentation is made to industry… 12

  13. Course Design and Implementation continued Industry participation in senior project continued • We need project ideas and champions for Fall 2002 • A good project is… • Technical • Slightly open-ended • Project scope: 4-student team prototypes within 3 months • Not on the “critical path” for industry • Not proprietary Presentation to industry… Need 8 such projects by mid-December 2002 Our fourth semester 6 13

  14. Course Design and Implementation continued Industry participation in senior project continued • What is needed from you • 1) A project and a kick-off meeting with a student team • 2) Mentoring (amount is up to you) • 3) One guest lecture • 4) Final student presentation at your corporate site Presentation to industry… 7 14

  15. Course Design and Implementation continued • Development process used… Requirements Specification Design Implementation Test Manufacture Distribution Maintenance End-of-life • Teach standard development process • Emphasis on prototype demo • 20% of final grade • Textbook is Fred Brooks Mythical • Man Month • Brooks was manager for OS/360 • Founded CS department at UNC Prototype 15

  16. Course Design and Implementation continued • Course outline… Weeks 1 thru 4: Lecture on development process Week 5: Project work day Weeks 6 thru 12: Guest lectures from industry - Prototype demo on week 9 Week 13: Mini-exam Week 14: Practice presentations Week 15: Final presentations and deliverables due 16

  17. Course Design and Implementation continued • Course deliverables… 1) Requirements document – week #3 2) Specification – week #6 3) Prototype demonstration – week #9 4) Test plan – week #10 5) Final demonstration and presentation – week #15 - Project demo - Formal presentation - Poster - Press release 17

  18. Course Design and Implementation continued • Course deliverables – sample poster 18

  19. Examples of projects • Breed Technologies - Spring 2002 Situation: Breed Technologies develops auto safety products and has many ongoing projects and employees. Time cards and project tracking is paper-and-pencil based. Requirements: Develop a web-based labor and project tracking system. Project results: Web-based system developed and deployed. 19

  20. Examples of projects continued • Raytheon - Fall 2002 Situation: Raytheon develops secure telephone systems. There is a need to be able to validate the user of a telephone. Requirements: Prototype the use of finger-print biometric devices for authorizing the user of an IP telephone. Project results: Developed software to use off-the-shelf biometric fingerprint device to enable a PC-based IP telephone. 20

  21. Examples of projects continued • Sonny’s BBQ – Spring 2002 and Fall 2002 Situation: Sonny’s is the largest USA BBQ chain. Order taking is paper-and-pencil based and is labor intensive and error prone. Requirements: Prototype the use of wireless hand-held computers for order taking and transmission to the kitchen. Project results: First semester developed user interface for hand-held Palm computers. Second semester developed wireless interface and order delivery to the kitchen. 21

  22. Examples of projects continued • Sypris Electronics – Fall 2002 and Spring 2003 Situation: Sypris develops cryptographic “boxes” for the DoD. There is a need for cryptographic security on COTS hand-held computers. Requirements: Develop a cryptographic service provider software package for a Microsoft WinCE handheld. Project results: First semester developed most of software to run on a PC. Second semester group ported to hand-held and productized the software. 22

  23. Evaluation of the course • Component #1 – Modified course structure is an improvement • Structured environment, no “back ending” of project work • Component #2 – Student self-surveys • Almost all the students state that soft topics covered • are critical to career success • Almost all students state that they believe this course is • better preparing them for industry that any other course • Component #3 – Long term evaluation • Yet to be done, we need to survey graduates 2 to 5 years • past graduation 23

  24. Summary and future work • Described design of an industry-based capstone design course • We believe very beneficial to students entering workforce • Future work is long-term evaluation of graduates • We hope that our experience can be of value to others Course outline and syllabus are included in the paper 24

More Related