1 / 28

Representing the UMLS Semantic Network using OWL Vipul Kashyap 1 and Alex Borgida 2

Representing the UMLS Semantic Network using OWL Vipul Kashyap 1 and Alex Borgida 2 1 LHCNBC, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894 2 Department of Computer Science, Rutgers University, New Brunswick, NJ 08903.

Ava
Download Presentation

Representing the UMLS Semantic Network using OWL Vipul Kashyap 1 and Alex Borgida 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Representingthe UMLS Semantic Networkusing OWL Vipul Kashyap1 and Alex Borgida2 1 LHCNBC, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894 2 Department of Computer Science, Rutgers University, New Brunswick, NJ 08903 Seminar Prinzipien des Ontological Engineering Leipzig, 15.01.2004 Kristin Lippoldt Email: kristin.lippoldt@imise.uni-leipzig.de

  2. Outline • The UMLS Semantic Network (SN) • Representation of SN using OWL • Multiple interpretations of „link“ • Evaluation of the interpretation variants • Methodology for choosing the „right“ representation variant (first steps)

  3. The UMLS Semantic Network • nodes = semantic types • links = semantic relationships • two high level is-a hierarchiesEntity, Event • is-a hierarchie of relationshipsphysically_related_to, spatially_related_to, temporally_related_to, functionally_related_to, conceptually_related_to functionally_related_to affects is-a manages is-a

  4. The UMLS Semantic Network (excerpt)

  5. OWL • Web Ontology Language • Based on DAML+OIL • Description of classes, properties (e.g. relations between classes (e.g. disjointness), cardinality (e.g. "exactly one")) • Sublanguages: • OWL Lite (lower formal complexity than OWL DL, only cardinality values of 0 or 1) • OWL DL (maximum expressiveness, computational completeness ) • OWL Full (maximum expressiveness, syntactic freedom of RDF with no computational guarantees)

  6. Description Logic - OWL Bacterium ODER Virus <owl:Class> <owl:unionOf rdf:parseType=“Collection”> <owl:Class rdf:about=“#Bacterium”/> <owl:Class rdf:about=“#Virus”/> </owl:unionOf> </owl:Class>

  7. Representation of SN using OWL • Semantic Types  OWL classes • Fungus  Organism • Virus  Organism • Semantic Relationships  OWL properties • part_of  physically_related_to • affects  functionally_related_to • Properties of Semantic Network Relationships • Asymmetric relationships • has_part ≡ part_of • Symmetric relationships • adjacent_to ≡ adjacent_to

  8. Semantics of a „link“ in the UMLS SN Bacteria Infection causes Two operators  and : • (causes) = { x  Bacteria  (y)(y  Infection  causes(x,y)) }DL notation: (causes) ≡ causes.T • (causes) = { y  Infection  (x)(x  Bacteria  causes(x,y)) }DL notation: (causes) ≡ causes.T

  9. Interpretation 1: / equals • axioms: causes.T ≡ Bacteria, causes.T≡ Infection • All Bacteria have to “cause” and all Infections have to“be-caused” (no others can participate in “causes”) b1 i1 b2 i2 b3 i3 b4

  10. Interpretation 2: / subsumed • axioms: causes.T  Bacteria, causes.T Infection • Not all bacteria need to “cause” not all infections have to “be-caused” (However no others can participate) i1 b2 i2 b3 i3 b4

  11. Interpretation 3: / subsumes • axioms: Bacteria  causes.T, Infection causes.T • All bacterias have to “cause” and all infections have to “be-caused”, but • A bacteria can cause a “non-infection” as well! • A “non-bacteria” can cause an infection as well! y1 i1 b2 i2 b3 i3 b4 x1

  12. Interpretation 4: All/Some • axiom: Bacteria  causes.Infection • All bacteria must “cause” some infection, but • A bacteria can cause a “non-infection” as well! • A “non-bacteria” can cause an infection as well! y1 i1 b2 i2 b3 i3 b4 x1

  13. Interpretation 5: All/Only • axiom: Bacteria  causes.Infection • All bacteria, if they “cause”, can cause only infections, but • Not all bacteria have to participate in the “causes” relationship • A non-bacteria can still cause an infection! y1 i1 b2 i2 b3 i3 b4

  14. Interpretation 6: All/Each • axiom: Bacteria  causes.Infection • Similar to a cross product, but • A bacteria can still cause a non-infection! i1 b2 i2 b3 i3 b4 x1

  15. Interpretation 7: Some/Some • axiom:  1 (Bacteria  causes.Infection) • There is at least one bacteria that “causes” at least one infection, but • A bacteria can still cause a non-infection! • A non-bacteria can still cause an infection! y1 i1 b2 i2 b3 i3 b4 x1

  16. Interpretation 8: Some/Each • axiom:  1 (Bacteria  causes.Infection) • There is at least one bacteria that “causes” all infections, but • A bacteria can still cause a non-infection! • A non-bacteria can still cause an infection! y1 i1 b2 i2 b3 i3 b4 x1

  17. Summary of Interpretations • equals: causes.T ≡ Bacteria, causes.T≡ Infection • subsumed: causes.T  Bacteria, causes.T Infection • subsumes: Bacteria  causes.T, Infection causes.T • all/some: Bacteria  causes.Infection • all/only: Bacteria  causes.Infection • all/each: Bacteria  causes.Infection • some/some:  1 (Bacteria  causes.Infection) • some/all:  1 (Bacteria  causes.Infection)

  18.  and  Inheritance  inheritance P(A,B) C  A P(C,B)  inheritance P(A,B) D  B P(A,D) Example: process_of(BiologicFunction,Organism) C = PhysiologicFunction D = Animal • equals: no support of inheritance , A ≡ C • subsumed: no support of inheritance A C process_of.T

  19.  and  Inheritance process_of.T process_of-.T • subsumes: supports both • all/some: supports  inheritance,but not  inheritance • all/only: supports  inheritance,but not  inheritance A B C D process_of.B process_of-.D A B C D process_of.B A C

  20.  and  Inheritance process_of. D • all/each: supports both • some/some: no support of inheritance • some/all: doesn’t supports  inheritance, but  inheritance process_of. B A C

  21. Blocking of Inheritance Example: Process_of(BiologicFunction,Organism) Process_of(MentalProcess,Plant) Modifying axioms: subsumes: P(A,B) C1 A and D1 B A  C1 (P) and B  D1 (P)

  22. Ergebnis

  23. Methodologie für die Kodierung von Wissen im Semantic Web • Wahl der Kodierung • Unterstützung von Inferenz • Unterstützung der intendierten Anwendung • Nachvollziehbares Domänenmodell • Repräsentation in der Ontologiesprache

  24. Unterstützung von Inferenzen • Welche Kodierung unterstützt Inferenz? • All/each und subsumes • Unterstützt die Kodierung nicht-intendierte Inferenzen? • Some/some unterstützt Aufwärts-Vererbung von Links • Kann etwas aus der Abwesenheit eines Links geschlussfolgert werden? • A  P. B verbietet nicht, dass A in Relation zu B steht

  25. Unterstützung der intendierten Anwendung • Ist es wichtig Inkonsistenzen zu erkennen? • Was sind Inkonsistenzen? • Wird die Kodierung diese Inkonsistenzen erkennen?

  26. Nachvollziehbarkeit des Domänenmodells • Konzepte sind Kollektionen von Instanzen • Causes(Bacteria,Infection) • Was ist die intuitive Kodierung? • All/some and all/only wird von medizinischen Ontologien genutzt • All/each und some/some wurden abgelehnt • Gibt es alternative Interpretationen? • Aber: all/each erfüllt alle UMLS SN Anforderungen

  27. Repräsentation in der Ontologiesprache • Grenzen von OWL • Negation und Disjunktion von Rollen • Kardinalität von Konzepten • Kann man weniger „teure“ Konstrukte verwenden? • Ressourcen fließen in die Komplexität der DL Operatoren

  28. Conclusions and Future Work • Experiences in representing a real world “ontology”, the UMLS Semantic Network • Has been used very successfully • Requirements: / inheritance, inheritance blocking, polymorphic relationships • Presented multiple interpretations and encodings and evaluated their support for the UMLS Semantic Network requirements • Ontology developers and encoders on the Semantic Web might encounter similar requirements and possible encodings • Identified criteria for choosing between the various encodings • First steps towards a methodology which might be useful to ontology developers • Ongoing and Future Work • Semantic Vocabulary Interoperation Project • http://cgsb2.nlm.nih.gov/~kashyap/projects/SVIP • Use of OWL, RDF for improvement in Medical Information Retrieval

More Related