440 likes | 943 Views
Danish Quantum Optics Center University of Aarhus. QuanTOp. Niels Bohr Institute Copenhagen University. Light-Matter Quantum Interface. Eugene Polzik LECTURE 4. IHP Quantum Information Trimester. Quantum memory for light: criteria. Memory must be able to store independently prepared
E N D
Danish Quantum Optics Center University of Aarhus QuanTOp Niels Bohr Institute Copenhagen University Light-Matter Quantum Interface Eugene Polzik LECTURE 4 IHP Quantum Information Trimester
Quantum memory for light: criteria • Memory must be able to store independently prepared • states of light • The state of light must be mapped onto the memory with • the fidelity higher than the fidelity of the best • classical recording • The memory must be readable B. Julsgaard, J. Sherson, J. Fiurášek , I. Cirac, and E. S. Polzik Nature, 432, 482(2004); quant-ph/0410072.
Mapping a Quantum State of Light onto Atomic Ensemble Spin Squeezed Atoms 1 > 2 > 0 > Experiment: Hald, Sørensen, Schori, EP PRL 83, 1319 (1999) Very inefficient lives only nseconds, but a nice first try… The beginning. Complete absorption Squeezed Light pulse Proposal: Kuzmich, Mølmer, EP PRL 79, 4782 (1997) Atoms
…and feedback applied Strong driving Weak quantum Projection measurement on light can be made… Passes through one… or more atomic samples Dipole off-resonant interaction entangles light and atoms Our light-atoms interface - the basics Light pulse – consisting of two modes
x -45 45 Polarization – Stokes parameters y Circular polarizations Linear polarizations Polarization quantum variables – Light Propagation direction vertical horizontal
x Quantum state (Wigner function) y z Canonical quantum variables for an atomic ensemble:
Decoherence from stray magnetic fields Magnetic Shields Special coating – 104 collisions without spin flips Object – gas of spin polarized atoms at room temperature Optical pumping with circular polarized light
Various states t Pulse: • Canonical quantum variables for light • Complementarity : amplitude and phase of • light cannot be measured together
450 -450 EOM l/4 Polarization homodyning - measure X (or P) Polarizing Beamsplitter 450/-450 Strong field A(t) x Quantum field a -> X,P Polarizing cube S1
x,p Bell measurement Teleportation in the X,P representation
Projection measurement X Today: another idea for (remote) state transfer and its experimental implementation for quantum memory for light See also work on quantum cloning: J. Fiurasek, N. Cerf, and E.S. Polzik, Phys.Rev.Lett.93, 180501 (2004)
Implementation: light-to-matter state transfer - C squeeze atoms first No prior entanglement necessary = C F≈80% F→100% B. Julsgaard, J. Sherson, J. Fiurášek , I. Cirac, and E. S. Polzik Nature, 432, 482(2004); quant-ph/0410072.
Quantum computing with linear operations Quantum buffer for light More efficient repeaters Quantum Key storage in quantum cryptography These criteria should be met for memory in:
e.-m. vacuum Classical benchmark fidelity for transfer of coherent states Atoms Best classical fidelity 50% K. Hammerer, M.M. Wolf, E.S. Polzik, J.I. Cirac, Phys. Rev. Lett. 94,150503 (2005),
Preparation of the input state of light EOM Vacuum Input quantum field Coherent Squeezed Strong field A(t) Quantum field - X,P x Polarizing cube S1 P Polarization state X
450 -450 Physics behind the Hamiltonian: 1. Polarization rotation of light Polarizing Beamsplitter 450/-450 x Quantum field Polarizing cube
EOM Physics behind the Hamiltonian: 2. Dynamic Stark shift of atoms Atoms atoms Strong field A(t) Quantum field - a x Polarizing cube y
PL atoms Quantum memory – Step 1 - interaction Light rotates atomic spin – Stark shift XL Atomic spin rotates polarization of light – Faraday effect Output light Input light Entanglement
PL XL c light out atoms Feedback to spin rotation Compare to the best classical recording Quantum memory – Step 2 - measurement + feedback Polarization measurement Fidelity – > 100% (82% without SS atoms)
Experimental realization of quantum memory for light
Memory in rotating spin states B B y z Atomic Quantum Noise 2,4 2,2 2,0 1,8 1,6 1,4 1,2 Atomic noise power [arb. units] 1,0 0,8 0,6 0,4 0,2 0,0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 Atomic density [arb. units]
Memory in rotating spin states - continued B B x z y Atomic Quantum Noise 2,4 2,2 2,0 1,8 1,6 1,4 1,2 Atomic noise power [arb. units] 1,0 0,8 0,6 0,4 0,2 0,0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 Atomic density [arb. units]
Rotating frame spin Memory in atomic Zeeman coherences Cesium 4 3 2
B B x z y
Input pulse Readout pulse Magnetic feedback Nature, Nov. 25 (2004) quant-ph/0410072.
Light Pin~ SYin Xin~ SZin p / 2 - rotation Stored state versus Input state: mean amplitudes X plane read write t output input Y plane Magnetic feedback
Stored state: variances Absolute quantum/classical border 3.0 Perfect mapping Atoms <P2mem > Light <P2in >=1/2 <X2mem> <X2in> =1/2
Experiment 0.68 Coherent states with 0 < n <4 Coherent states with 0 < n <8 0.66 F Experiment 0.64 0.64 0.62 0.62 Best classical mapping 0.58 0.58 0.56 0.56 Best classical mapping 0.54 Gain 0.65 0.7 0.75 0.8 0.85 0.9 0.82 0.84 0.86 0.88 0.9 Fidelity of quantum storage • State overlap averaged over • the set of input states
1-2Hz 3-6Hz 25-40Hz Dominating (T is time, typical 2ms) Atomic/shot ratio (retaining the dominating term) Decoherence up to around 0.5 Theoretical entanglement with no decoherence: Decoherence Limitations Typical estimate of linewidth: G[Hz] = 5 + 0.1*q[deg] + 1.0*P[mW] + 0.5*P[mW]*q[deg] Working values: Important for entanglement: Need k2 large and h low, impossible.
Initial state of atoms coherent Input state State overlap 63% Fidelity 100% for a qubit input state 78% 90% Qubit fidelity Deterministic quantum memory for a light Qubit Initial state of atoms squeezed Realized by an extra QND measurement pulse A. Sørensen, NBI
Quantum Memory for Light demonstrated • Deterministic Atomic Quantum Memory proposed and • demonstrated for coherent states with <n> in • the range 0 to 10; lifetime=4msec • Fidelity up to 70%, markedly higher than best • classical mapping
Scalability – an array of dipole traps or solid state implementation – quantum holograms Detector array Spatial array of memory cells I. Sokolov and EP, to be submitted
Future: Inverse Mapping AtomsLight Atoms Y Detector Proposals: Kuzmich, EP. 2001; Kraus, Giedke, Cirac 2001 Y l/4 wave plate Recent advanced proposals: K. Hammerer, K. Mølmer, EP, J.I. Cirac. Phys.Rev. A., 70, 044304 (2004). J. Sherson, K. Mølmer, A.Sørensen, J. Fiurasek, and EP quant-ph/0505170 Light pulse
Quantum memory read-out: single pulse in squeezed state z Step 1 x y Step 2 Exchange y and z components: pass light through l/4 plate and probe along spin-y axis z y
Light-Atoms Q-interface with cold atoms 6P Cesium clock levels F=4 F=3 D. Oblak C. Alzar, P. Petrov
Memory Summary • New state transfer protocol →quantum memory for light • Experimental demonstration for coherent states • Nature, 432, 482(2004) • Prediction for a qubit state – bridging dicrete and • continuous variables • State retrieval protocols
Figure of merit Probe depumping parameter: Criteria for light-ensemble interface • 2-level stable state with long coherence time • Initialization: collective coherent spin state (CSS) • Coupling of the CSS to light corresponding to • high optical density
Multi-atom Cat states Color code “easy” hard Atomic teleportation 3-party entanglement/ Secret sharing Scaling/ solid state implementation Entangled atoms + Entangled light + Light/atoms QI exchange Quantum memory for light Distillation by local operations Continuous variable logic Discrete variable logic
cold atomic cloud cavity enhanced interaction • enhanced phase shift • power build-up inside cavity compensate with smaller photon number T: mirror transmission a: absorption
Coupling strength of the interface z y x Initial coherent spin state: Spin squeezed state Measurement on light results in distribution degree of squeezing in Jz Figure of merit for the quantum interface Z Duan, Cirac, Zoller, EP PRL (2000)
Probe scattering parameter: Figure of merit for the quantum interface
0.3 Single pass interaction 30 50 10 Spontaneous emission probability degree of entanglement + h Figure of merit for the quantum interface Spontaneous emission – the fundamental limit K. Hamerrer, K. Mølmer, E. S. Polzik, J. I. Cirac. PRA 2004, quant-ph/0312156