1 / 18

Neural heuristics for Problem Solving

10-09-2004 Siena Neural heuristics for Problem Solving Outline Problem Solving Heuristic Search Optimal Search and Admissibility Neural heuristics for Problem Solving Architecture Asymmetric Regression Dataset Generation Likely-admissibility Multiple neural heuristics

Gabriel
Download Presentation

Neural heuristics for Problem Solving

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 10-09-2004 Siena Neural heuristics for Problem Solving Outline • Problem Solving • Heuristic Search • Optimal Search and Admissibility • Neural heuristics for Problem Solving • Architecture • Asymmetric Regression • Dataset Generation • Likely-admissibility • Multiple neural heuristics Marco Ernandes - email: ernandes@dii.unisi.it

  2. 1 2 3 4 5 11 9 15 5 6 7 8  8 1 6 10 xo 9 10 11 12 3 7 14 g P 13 14 15 4 13 2 12 Problem Solving • PS is a decision-making process that aims to find a sequence of operators that takes the agent from a given state to a goal state. • We talk about: states, successor function (defines the operators available at each state), initial state, goal state, problem space. Marco Ernandes - email:ernandes@dii.unisi.it

  3. Heuristic Search • Search algorithms (best-first, greedy, …): define a strategy to investigate the search-tree. • Heuristic information h(n): typically the distance from node n (of the search-tree)to goal • Heuristic usage policy : how to combine h(n) and g(n) to obtain f(n). n g(n) h(n) xo * g P Marco Ernandes - email:ernandes@dii.unisi.it

  4. Optimal Heuristic Search • GOAL: retrieve the solution that minimizes the path cost (sum of all the operator costs) C=C* • Requires: • an optimal search algorithm (A*, IDA*, BS*) • an admissible heuristic, h(n)h*(n) (i.e. Manhattan) • an admissible heuristic usage (f(n) =h(n) + g(n) , ) • Complexity: • Optimal solving: any puzzle is NP-Hard. • Non-admissible search is polynomial. Marco Ernandes - email:ernandes@dii.unisi.it

  5. Our idea about admissible search • The best performance in literature: memory-based heuristics (Disjoint Pattern DBs, <Korf&Taylor, 2002>) • Offline phase: resolution of all possibile subproblems and storage of all the results. • Online phase: decomposition of a node in subproblems and database querying. • Our idea: • memory-based heuristics have little future because they only shift NP-completeness from time to space. • ANN (as universal approx.) can provide effective non-memory-based, “nearly” admissible heuristics. Marco Ernandes - email:ernandes@dii.unisi.it

  6. Outline: • Problem Solving • Heuristic Search • Optimal Search and Admissibility • Neural heuristics for Problem Solving • Architecture • Asymmetric Regression • Dataset Generation • Likely-admissibility • Multiple neural heuristics Marco Ernandes - email:ernandes@dii.unisi.it

  7. heuristic evaluation error check 7 3 5 BP 2 4 6 01001000010 1 8 request an estimation extraction of an example Neural heuristics We used standard MLP networks. ONLINE PHASE OFFLINE PHASE h(n) Marco Ernandes - email:ernandes@dii.unisi.it

  8. – Neural heuristics –Outputs, Targets & Entrances • It’s a regression problem, hence we used 1 linear output neuron (modified a posteriori exploiting information from Manhattan-like heuristics). • 2 possible targets: • A) “direct” target function  o(x) = h*(x) • B) “gap” target  o(x) = h*(x)-hM(x) (which takes advantage of Manhattan too) • Entrances coding: • we tried 3 different vector-valued codings • future work: represent configurations as graphs, in order to have non-dimension-dependent learning. (i.e. exploit learning from 15-puzzle, in the 24-puzzle). Marco Ernandes - email:ernandes@dii.unisi.it

  9. – Neural heuristics –Learning Algorithm • Normal backpropagation algorithm, but … • Introducing a coefficient of asymmetry in the error function. This stresses admissibility: • Ed = (1-w) (od –td) if (od –td) < 0 • Ed = (1+w) (od –td) if (od –td) > 0 • We used a dynamic decreasing w, in order to stress underestimations when learning is simple and to ease it successively. Momentum a=0,8 helped smoothness. with 0 < w < 1 Marco Ernandes - email:ernandes@dii.unisi.it

  10. – Neural heuristics –Asymmetric Regression • This is a general idea for backprop learning. • It can suit any regression problem where overestimations harm more than underestimations (or contrary). • Heuristic machine learning is an ideal application field. • We believe that totally admissible neural heuristics are theoretically impossible, or at least impracticable. Symmetric error Asymmetric error Marco Ernandes - email:ernandes@dii.unisi.it

  11. – Neural heuristics –Dataset Generation • Examples are previously optimally solved configurations. It seems a big problem, but … • Few examples are sufficient for good learning. A few hundreds to have faster search than Manhattan. We used a training set of 25000 to (500 million times smaller than the problem space). • These examples are mainly “easy” ones, over 60% of 15-puzzle examples have d < 30, whereas only 0,1% of random cases have d < 30 [see 15-puzzle search tree distribution]. • All the process is fully parallelizable. • Further works: auto-feed learning. Marco Ernandes - email:ernandes@dii.unisi.it

  12. – Neural heuristics –Are sub-symbolic heuristics “online”? • We believe so. Even that there is an offline learning phase. For 2 reasons: • 1. Nodes visited during search are generally UNSEEN. • Exactly like often humans do with learned heuristics: we don’t recover a heuristic value from a database, we compute it employing the inner rules that the heuristic provides. • 2. The learned heuristic should be dimension-independent: learning over small problems could be used for bigger problems (i.e. 8-puzzle  15-puzzle). This is not possible with mem-based heuristics. Marco Ernandes - email:ernandes@dii.unisi.it

  13. Outline: • Problem Solving • Heuristic Search • Optimal Search and Admissibility • Neural heuristics for Problem Solving • Architecture • Asymmetric Regression • Dataset Generation • Likely-admissibility • Multiple neural heuristics Marco Ernandes - email:ernandes@dii.unisi.it

  14. Likely-Admissible Search • We relax the optimality requirement in a probabilistic sense (not qualitatively like e-admissible search). • Why is it a better approach than e-admissibility? • It allows to retrieve TRULY OPTIMAL solutions. • It still allows to change the nature of search complexity. • Because search can rely on any heuristic, unlike e-admissible search that works only on already-proven-admissible ones. • Because we can better combine search with statistical machine learning techniques. Using universal approximators we can automatically generate heuristics. Marco Ernandes - email:ernandes@dii.unisi.it

  15. – Likely-Admissible Search –A statistical framework • One requisite: to have a previous statistical analysis of overestimation frequencies of our h. • P(h$) shall be the probability that heuristic h underestimates h* for any given state xX. • ph shall be the probability of optimally solving a problem using h and A*. • TO ESTIMATE OPTIMALITY FROM ADMISSIBILITY: Marco Ernandes - email:ernandes@dii.unisi.it

  16. – Likely-Admissible Search –Multiple Heuristics • To enrich the heuristic information we can generate many heuristics and use them simultaneously, as: • Thus: • If we will consider for simplicity that all j heuristics have the same given P(h+2): j grows logarithmically with d and pH Marco Ernandes - email:ernandes@dii.unisi.it

  17. – Likely-Admissible Search –Optimality prediction • Unfortunately the last equation is very optimistic since it assumes a total error independency among neural heuristics. • For predicions we have to use which is: • Extremely precise for optimality over 80%. • Imprecise for low predictions. • Predictions are much more accurate than e-admissible search predictions. Marco Ernandes - email:ernandes@dii.unisi.it

  18. Experimental Results & Demo • Compared to Manhattan: • IDA* with 1 ANN (optimality  30%): 1/1000 execution time, 1/15000 nodes visited • IDA* with 2 ANN (opt.  50%): 1/500 time, 1/13000 nodes. • IDA* with 4 ANN-1 (opt.  90%): 1/70 time, 1/2800 nodes. • Compared to DPDBs: • IDA* with 1 ANN (optimality  30%): between -17% and +13% nodes visited, between 1,4 and 3,5 times slower • IDA* with 2 ANN (opt.  50%): -5% nodes visited, 5 times slower (but this could be parallelized completely!) Try the “demo” at: http://www.dii.unisi.it/ ~ernandes/samloyd/ Marco Ernandes - email:ernandes@dii.unisi.it

More Related