1.05k likes | 1.86k Views
2. Agenda. OLI's basic historyOLI's history with Aspen TechnologiesAdvantages/disadvantages of Aspen PLUS OLIArchitecture of the Aspen PLUS OLI interfaceIntroduction to MSEOverview of Aspen PLUS OLI (with MSE)Demonstration. 3. OLI's basic history. Company founded in 1971 by Marshall RafalFirst electrolyte simulator (ECES) 1973 Developed for OLIN ChemicalFirst commercial sale of ECES 1975DupontThe Environmental Simulation Program developed in 1991Linkage to simulators in 1995Windows 1140
E N D
1. OLIs Mixed Solvent Electrolyte with Aspen PLUS OLI Systems, Inc.
2. 2 Agenda OLIs basic history
OLIs history with Aspen Technologies
Advantages/disadvantages of Aspen PLUS OLI
Architecture of the Aspen PLUS OLI interface
Introduction to MSE
Overview of Aspen PLUS OLI (with MSE)
Demonstration
3. 3 OLIs basic history Company founded in 1971 by Marshall Rafal
First electrolyte simulator (ECES) 1973
Developed for OLIN Chemical
First commercial sale of ECES 1975
Dupont
The Environmental Simulation Program developed in 1991
Linkage to simulators in 1995
Windows program (Analyzers) became commercial in 2000
Mixed-Solvent Electrolytes commercially available 2005
Windows based process simulator (OLI Pro) to be available in 2007
4. 4 OLIs history with Aspen Technologies That Other chemical company that has a D in its name.
25 years of process simulation experience with electrolyte
1995 switched to Aspen PLUS as their process simulator
Wanted OLIs electrolytes in Aspen PLUS
1996 first Aspen PLUS OLI interface created
No model manager, version 8.2
1997 Aspen PLUS OLI linked to model manager
Version 9.0
2006 Aspen PLUS OLI updated for Aspen ONE 2006
Included change in concentration basis
Included MSE
2007 Aspen PLUS OLI updated for Aspen ONE 2006.5
General release of MSE for all Aspen PLUS OLI clients
5. 5 Advantages of Aspen PLUS OLI User Interface
Learn one flow sheeting system
Multiple Property Options in same flowsheet
Different Non-electrolyte capability
Sizing
Costing
Two Software Venders
6. 6 Disadvantages of Aspen PLUS OLI No Corrosion
No advanced OLI technology
No Ion-exchange
No Surface Complexation
No Bio-kinetics
No Scaling Tendencies
Two Software Venders
7. 7 Architecture of the Aspen PLUS OLI interface
8. 8 Architecture of the Aspen PLUS OLI interface Aspen Unit Operations available with the OLI Property Set
MIXERS
FSPLIT
SEP
SEP2
HEATER
FLASH2
FLASH3
HEATX
MHEATX
RADFRAC
RSTOIC
RYIELD
RCSTR
RPLUG
PUMP
COMPR
9. 9 Architecture of the Aspen PLUS OLI interface Thermodynamic Properties from OLI used by Aspen PLUS (OLI propset)
10. 10 Architecture of the Aspen PLUS OLI interface The OLI-Aspen Plus Cross Reference File (partial listing)
Full listing is available on your computer:
C:\Program Files\OLI Systems\Alliance Suites\Aspen OLI 2006\Databanks\OLIAspenPlusCompXRef.lis
11. 11 Architecture of the Aspen PLUS OLI interface OLI added user blocks to Aspen PLUS
EFRACH
EFLASH
Available during Aspen PLUS Installation
Must be enabled at run-time
12. 12 Architecture of the Aspen PLUS OLI interface EFLASH
13. 13 Architecture of the Aspen PLUS OLI interface EFRACH
14. 14 Introduction to MSE Why develop a new thermodynamic model?
The Bromley-Zemaitis model (a/k/a Aqueous Model-AE) had limitations
Water was required as a solvent
Mole fraction of all solutes was limited to approximately 0.35
Limited in temperature (Approximately 300 oC)
LLE predictions exclude critical solution points (limited to strongly dissimilar phases)
A Mixed Solvent Electrolyte model (MSE) has advantages
Water is not required
Mole fraction of solute can approach and be equal to 1.0
Temperature can be up to 0.9 Tc of solution
Full range of LLE calculations including electrolytes in both phases
15. 15 Introduction to MSEAdvantages and disadvantages between AE and MSE
MSE model
Model advantages:
No composition limitations
Reliable predictions for multicomponent concentrated solutions
Full range of LLE calculations including electrolytes in both phases
Methodological advantages
Multi-property regressions
Consistent use of thermochemical properties (no shortcuts like KFITs)
Rigorous quality assurance
Disadvantages:
A smaller in-place databank but it is continuously extended
16. 16 Introduction to MSE Overview of species coverage between AE and MSE models.
17. 17 Structure of the thermodynamic model Definition of species that may exist in the liquid, vapor, and solid phases
Excess Gibbs energy model for solution nonideality
Calculation of standard-state properties
Helgeson-Kirkham-Flowers equation for ionic and neutral aqueous species
Standard thermochemistry for solid and gas species
Algorithm for solving phase and chemical equilibria
18. Outline of the model:Solution nonideality
Overvier of Version 1.1
Page 2 of 2Overvier of Version 1.1
Page 2 of 2
19. 19 Outline of the model:Chemical equilibrium calculations For a chemical reaction:
At equilibrium
with
20. 20 Outline of the model:Constraints
21. 21 Mixed-solvent electrolyte model:Applicability
Simultaneous representation of multiple properties
Vapor-liquid equilibria
Osmotic coefficient/water activity and activity coefficients
Solid-liquid equilibria
Properties of electrolytes at infinite dilution, such as acid-base dissociation and complexation constants
Properties that reflect ionic equilibria, e.g., solution pH and species distribution
Enthalpy (?Hdil or ?Hmix)
Heat capacity
Density
22. 22 Validity range Concentrations from infinite dilution to saturation or fused salt or pure solute limit
Temperatures up to 0.9Tc of mixtures
This translates into 300 C for H2O dominated systems
For concentrated inorganic systems, substantially higher temperatures can be reached
Solvents: water, various organics or solvent mixtures
23. 23 Representative applications of the MSE thermodynamic model Strong acid systems
Simultaneous representation of phase equilibria and speciation
Salt systems
Prediction of properties of multicomponent systems
Organic salt water systems
Salt effects on VLE, LLE and SLE
Acid-base equilibria
pH of mixed-solvent systems
24. 24 VLE for H2SO4 + SO3 + H2O
25. 25 Speciation for H2SO4 + SO3 + H2O:
26. 26 Partial pressures in the H2SO4 + SO3 + H2O system
27. 27 Salt systems:Na K Mg Ca Cl NO3 Step 1: Binary systems solubility of solids
The model is valid for systems ranging from dilute solutions to the fused salt limit
28. 28 Modeling salt systems:Na K Mg Ca Cl NO3 Step 1: Binary systems solubility of solids
Water activity decreases with salt concentration until the solution becomes saturated with a solid phase
29. 29 Step 2: Ternary systems Solubility in the system NaNO3 KNO3 H2O at various temperatures
Activity of water over saturated NaNO3 KNO3 solutions at 90 C: Strong depression at the eutectic point
30. 30 Step 3: Verification of predictions for multicomponent systems Deliquescence data simultaneously reflect solid solubilities and water activities
31. 31 Electrolyte + organic systems:Examples
32. 32 LLE results salt effect
33. 33 Simultaneous representation of thermodynamic properties:NaCl-methanol-water
34. 34 LLE in aqueous polymer salt systems
35. 35 Acid-base and phase equilibria: Treatment of pH in mixed solvents
36. 36 Treatment of pH in mixed-solvents
37. 37 Speciation Effects
38. 38 Parameters in the MSE Databank (1) Binary and principal ternary systems composed of the following primary ions and their hydrolyzed forms
Cations: Na+, K+, Mg2+, Ca2+, Al3+, NH4+
Anions: Cl-, F-, NO3-, CO32-, SO42-, PO43-, OH-
Aqueous acids, associated acid oxides and acid-dominated mixtures
H2SO4 SO3
HNO3 N2O5
H3PO4 H4P2O7 H5P3O10 P2O5
H3PO2
H3PO3
HF
HCl
HBr
HI
39. 39 Parameters in the MSE Databank (2) Inorganic gases in aqueous systems
CO2 + NH3
H2S + NH3
SO2 + H2SO4
N2
O2
H2
Transition metal aqueous systems
Fe(III) H O SO4, NO3
Fe(II) H O SO4, Br
Sn(II, IV) H O CH3SO3
Zn(II) H SO4, NO3, Cl
Zn(II) Li - Cl
40. 40 Parameters in the MSE Databank (3) Transition metal aqueous systems - continued
Cu(II) H SO4, NO3
Ni(II) H SO4, NO3, Cl
Mo(VI, IV) H O Cl, SO4, NO3
W(VI) H - O - Na Cl, NO3
Most elements from the periodic table in their elemental form
Base ions and hydrolyzed forms for the majority of elements from the periodic table
Hydrogen peroxide chemistry
H2O2 H2O H - Na OH SO4 NO3
41. 41 Parameters in the MSE Databank (4) Miscellaneous inorganic systems in water
NH2OH
NH4HS + H2S + NH3
LiCl KCl
LiCl CaCl2
Na2S2O3
LiOH H3BO3 H2O
Organic acids in water, methanol and ethanol and their Na salts
Formic
Acetic (also K salt)
Citric
Adipic
Nicotinic
Terephthalic
Isophthalic
Trimellitic
42. 42 Parameters in the MSE Databank (5) Organic components and their mixtures with water
Hydrocarbons
Straight chain alkanes: C1 through C30
Isomeric alkanes: isobutane, isopentane, neopentane
Alkenes: ethene, propene, 1-butene, 2-butene, 2-methylpropene
Aromatics: benzene, toluene, o-, m-, p-xylenes, ethylbenzene, cumene, naphthalene, anthracene, phenantrene
Alcohols
Methanol, ethanol, 1-propanol, 2-propanol, cyclohexanol
Glycols
Mono, di- and triethylene glycols, propylene glycol, polyethylene glycols
Phenols
Phenol, catechol
Ketones
Acetone, methylisobutyl ketone
Aldehydes
Butylaldehyde
43. 43 Parameters in the MSE Databank (6) Organic solvents and their mixtures with water
Carbonates
Diethylcarbonate, propylene carbonate
Amines
Tri-N-octylamine, triethylamine, methyldiethanolamine
Nitriles
Acetonitrile
Amides
Dimethylacetamide, dimethylformamide
Halogen derivatives
Chloroform
Aminoacids
Methionine
Heterocyclic components
N-methylpyrrolidone, 2,6-dimethylmorpholine
44. 44 Parameters in the MSE Databank (7) Polyelectrolytes
Polyacrylic acid
Complexes with Cu, Zn, Ca
Mixed-solvent organic systems
HAc tri-N-octylamine toluene H2O
HAc tri-N-octylamine methylisobutylketone H2O
HAc MeOH EtOH H2O
HAc MeOH CO2 H2O
Dimethylformamide HFo H2O
45. 45 Parameters in the MSE Databank (8) Mixed-solvent inorganic/organic system
Hydrocarbon water salt (Na, K, Ca, Mg, NH4, H, Cl, SO4, NO3) systems
Mono, di- and triethylene glycols - H Na Ca Cl CO3 HCO3 - CO2 H2S H2O
Phenol - acetone - SO2 - HFo - HCl H2O
Benzene NaCl and (NH4)2SO4 - H2O
Cyclohexane NaCl - H2O
n-Butylaldehyde NaCl - H2O
LiPF6 diethylcarbonate propylene carbonate
Ethanol LiCl - H2O
Methanol - H2O + NaCl, HCl
46. 46 Predictive character of the model Levels of predictivity
Prediction of the properties of multicomponent systems based on parameters determined from simpler (especially binary) subsystems
Extensively validated for salts and organics
Prediction of certain properties based on parameters determined from other properties
Extensively validated (e.g., speciation or caloric property predictions)
47. 47 What does it mean for the model to be predictive?
48. 48 Predictive character of the model Levels of predictivity - continued
Prediction of properties without any knowledge of properties of binary systems
Standard-state properties: Correlations to predict the parameters of the HKF equation
Ensures predictivity for dilute solutions
Properties of solids: Correlations based on family analysis
Parameters for nonelectrolyte subsystems
Group contributions: UNIFAC estimation
Quantum chemistry + solvation: CosmoTherm estimation
Also has limited applicability to electrolytes as long as dissociation/chemical equilibria can be independently calculated
49. 49 Transport properties in the OLI software Available transport properties:
Diffusivity
Viscosity
Electrical conductivity
OLI was the first to develop transport property models for concentrated, multicomponent aqueous solutions
More recently, the models have been extended to mixed-solvent systems
50. 50 Modeling diffusivity in electrolyte systems Limiting diffusivity
Long-range electrostatic interactions
Relaxation effect:
Short-range interactions
Hard-sphere contribution:
Combination of the two effects:
51. 51 Calculation of diffusivity in MSE solutions
52. 52 Computation of diffusion coefficients:Species in NiCl2 solutions For complexed species, measured diffusion coefficients are weighted averages of diffusion coefficients of individual complexes:
53. 53 Modeling electrical conductivity
54. 54 Electrical conductivity model:H2O H2SO4 SO3
55. 55 Electrolytes in mixed solvents:MgCl2 + ethanol + water
56. 56 Viscosity model
57. 57 Viscosities of solvent mixtures, h0mix
58. 58 Effects of electrolyte concentration ??LR From the analytical model by Onsager and Fuoss (1932)
??s defined for multiple solvents
??s-s defined for solvent combinations
59. 59 Viscosity of H2O H2SO4 SO3
60. 60 Viscosity of salt organic - water systems:LiNO3-ethanol-H2O
61. 61 Sublimation / salt point calculations
62. 62 HI - I2 - H2O
H2O/HI/I2 full range of concentration, T
The heart of the IS Process
Challenge: presence of more than one LLE region together with regions of VLE and SLE
63. 63 MSE Challenge For systems within the AQ model limits, yes
Binary systems give reasonable results when water remains the dominant solvent
When the 2nd solvent, or different solvent predominates
All major components must be studied with respect to all solvents
e.g., for MEG systems, MEG Ca and MEG Na must be regressed, along with
64. 64 Overview of Aspen PLUS OLI (with MSE) Using the Aspen PLUS OLI Chemistry Generator
65. 65 Aspen OLI Chemistry Generator
66. 66 Aspen OLI Chemistry Generator
67. 67 Aspen OLI Chemistry Generator
68. 68 Aspen OLI Chemistry Generator
69. 69 Aspen OLI Chemistry Generator
70. 70 Aspen OLI Chemistry Generator
71. 71 Aspen OLI Chemistry Generator
72. 72 Aspen OLI Chemistry Generator
73. 73 Aspen OLI Chemistry Generator
74. 74 Aspen OLI Chemistry Generator
75. 75
76. 76 Aspen OLI Chemistry Generator
77. 77 Aspen OLI Chemistry Generator
78. 78 Aspen OLI Chemistry Generator
79. 79 Aspen OLI Chemistry Generator
80. 80 Aspen OLI Chemistry Generator
81. 81 Aspen OLI Chemistry Generator
82. 82 Aspen OLI Chemistry Generator
83. 83 Aspen OLI Chemistry Wizard
84. 84 Aspen OLI Chemistry Wizard
85. 85 Aspen OLI Chemistry Wizard
86. 86 Aspen OLI Chemistry Wizard
87. 87 Aspen OLI Chemistry Wizard
88. 88 Aspen OLI Chemistry Wizard
89. 89 Aspen OLI Chemistry Wizard
90. 90 Aspen OLI Chemistry Wizard
91. 91 Aspen OLI Chemistry Wizard
92. 92 Aspen OLI Chemistry Wizard
93. 93 Aspen OLI Chemistry Wizard
94. 94 Aspen OLI Chemistry Wizard
95. 95 Aspen OLI Chemistry Wizard
96. 96 Aspen OLI Chemistry Wizard
97. 97 Aspen OLI Chemistry Wizard
98. 98 Aspen Plus 2006
99. 99 Aspen Plus 2006
100. 100 Aspen Plus 2006
101. 101 Aspen Plus 2006
102. 102 Aspen Plus 2006
103. 103 Aspen Plus 2006
104. 104 Aspen Plus 2006
105. 105 Aspen Plus 2006
106. 106 Aspen Plus 2006
107. 107 Aspen Plus 2006
108. 108 Aspen Plus 2006
109. 109 Aspen Plus 2006
110. 110 Aspen Plus OLI with EFRACH
111. 111 Aspen Plus OLI with EFRACH
112. 112 Aspen Plus OLI with EFRACH
113. 113 Aspen Plus OLI with EFRACH
114. 114 Aspen Plus OLI with EFRACH
115. 115 Aspen Plus OLI with EFRACH
116. 116 Aspen Plus OLI with EFRACH
117. 117 Aspen Plus OLI with EFRACH
118. 118 Aspen Plus OLI with EFRACH
119. 119 Aspen Plus OLI with EFRACH
120. 120 Aspen Plus OLI with EFRACH
121. 121 Aspen OLI More examples?
Live cases?
Questions?
122. 122 Conclusion Using MSE in Aspen Plus is very similar to using any property set.
The OLI property sets can be used with standard Aspen PLUS unit operations or with OLI unit operations