1 / 6

Mohammad Alothman: How AI and Humans Contribute to AI Bias

I am Mohammad Alothman, a sophisticated expert in artificial intelligence technology solutions, having spent the best years of my study life understanding the nuances of artificial intelligence and its applications.<br>

Henry295
Download Presentation

Mohammad Alothman: How AI and Humans Contribute to AI Bias

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MohammadAlothman:HowAIand HumansContributetoAIBias IamMohammadAlothman,asophisticatedexpertinartificial intelligencetechnologysolutions,havingspentthebestyearsofmy studylifeunderstandingthenuances of artificialintelligenceandits applications. Butthemostcomplexquestionthat reallybaffledmethroughoutmy careeristhequestionregardingbias inAIsystems. Towhat extent isAIaresultof humanbias?Canoneattributewrongdecision- makingbyAIsystemstobiasesofthedesigners,gatherers ofdata, andalgorithmbuilders? Theseissues carry immenseimportanceforthefutureofAIas well asitsintegrationintosociety.Iwould thentakethe relationship betweenAIandhumans,especiallytherolehumanbiasplayswhenformingsystemsAI may or maynotbeaddressingor atleastattemptingtoreducesome. ThefieldofAIdesignhascomealongway;thishasreallymadesomeoutstanding innovation possible, suchaschangingdomainsfromhealthandfinancetoothers;nameafew.Yet,the liabilityofAIbiasis muchmoreapparentasAItechnologysolutionsaremoreandmore integratedintooureverydaylives. BiasinAIagentscanamplifydiscrimination,inequity,andunfairness,whichcanresultintoxic effects.Throughoutmylearning throughout mycareer,understanding rootcausesofAI bias helpsinensuringthatAIandhumanstogethercanwork inwaysthataddbenefits toallparties concerned. UnderstandingAIBiasandItsOrigins Ultimately,AIbiashas its rootsinthedatathatit is trainedon. Ifhumanbiasesfeedintotheinformationusedfortrainingtheartificialintelligencesystems, thenbydefinition, thatfeedsintotheAIalso.That'samassiveproblembecause, in effect, it meansthe nature oftheseAI systemsisintrinsicallyproblematic-beingimpartial, data-driven and,hence,decision-makingby objectivemetric.

  2. Yet,ifthetrainingdataon whichAIsystemsareorganizedcontainbiasedhistoricaldataorare biasedbasedonthestereotypingofthepeoplewhogatheredandannotatedit,anoutputof the biascontainedinthosedatawillbemadeby theAIsystem. • FrommyexperienceworkingwithAITechSolutions,I’veseen thatbiasesoften creepinto AI systemsinthreemainareas: • Datacollection:Thebiases inAIcanalsobefoundthroughbiases indatacollection. Therearehumanbiasespertainingtohowdataisbeingcollectedorannotatedordealt with.Therefore,theresultswillbebiased asaresult.Forexample,if anAIsystem makessomepredictionsaboutfuturerecidivismamongoffendersbasedontheir prior crimerecords, racialandsocio-economicbiasmaygetprolongedandperpetuated because these thingsmaybeembedded inthedatadue to social inequalities. • AlgorithmDesign:Bias,however,canalsobebroughtbythedesigningprocessofAI algorithms,butdevelopers' traininghasshownnottobeimmunisedtomaking their choicesfromthe verydesigning procedureto introduce thebiasbywayof designingan outcome-preferringratherthananeutralistic outcomeone,andusually,atthecorelevel ofdesigningaresuchbiasesinherentand tendtoprofoundlyinfluencewhatkind of decisionsanAIwillbeundertaking. • Decision-MakingProcesses: OnceAIsystemsarebuilt,thesesystems relyon algorithms tomakedecisions.Whenthealgorithms arebiasedandbuiltfromfaultyAI designs,theymightevenfurtherentrenchbiasedresultsincriticalareas suchashiring, criminaljustice,orhealthcare. • Ihavecometorealizethroughthisexperienceofworking intheareaof AIdevelopmentthat areasjustliketheseresultinthebiasesofAI; prettymuchevidentthat thishastranscended beyondjustathingandauser;therelationship, dynamicsbetweenAIandhumanthathuman biases inherentlyaffecttheseAIsystems.

  3. TheRelationshipofAIandHumanBias ThemoreIlearnabouttheAIworld,thecleareritgets:atits very core,biasis human.Inmany ways,AIandhumanbiasbringsitselftolifeinlittleprejudicesfromthedatathatwecollectall thewaythroughthedecisionsindesigningcreatedbydevelopers who are,forthemostpart, unawareoftheimpacttheirdecisionsmight carry. Bias,initspurestform,isnotnecessarily intentional. Thiscanbeunconsciousorstructural,based onculturalvaluesandembeddedexperiences. Forinstance,anAIsystemusedinhiringistrainedondatathat consistsmainlyof male applicants,so,initsrecommendations, itmayfavormale candidatesunconsciouslybecauseit wasnotexplicitlyprogrammed to doso. This is adirectimplicationoftheinherenthumanbiasinthehuman-madedatasetandquite clearlyshowshowAIandhumansmustalwaysbeinextricablylinked.Ipersonallyhaveseen, in myowncareer,howbiasesinhumandatacollectionaswellasinAIdesigncan leadto discriminatoryresults. Perhapstheworst thingaboutAIbiasis thatitoccursandcontinuesonforalongtime before beingnoticed. The case of human decision-makingentitiesmayatleastprovideexplanationofreasonsfor decisions made;ontheother hand,AIandhumansystemshavebeendescribedasa"black box,"whereinitisunclearastowhyadecisionwasarrivedat.Thisvaguenesshaslaidonthe morecriticalnecessityofaddressingroot causesofbiasin AIsystems.

  4. MitigatingBias inAISystems:StrategiestoAddressAIBias AsAIcontinues toadvance,thereisanever-increasingneedtoaddressAIbias.Workingwith AITechSolutionshasmademeidentifyseveralstrategiesthatcanhelpcurbbiasinAI systems.Theseapproachesareaimedatenhancingthe datausedforthe trainingof AI, refinementofalgorithms,andmaintenanceoftransparencyandfairness inthedecision-making process. ImprovingDataCollectionandCuration Theonlypracticalmeansbywhich AIbiaswillbeovercome isbyworkingtoimprove the methodfordatagatheringandpreparation. ThedevelopersneedtomakesurethatthedatacreatedinanavailablemannerforAItraining needstobediverseaswellasrepresentativewithoutanybias-baseddata. It wouldpossibly seekdatafromanunderrepresentedgrouppreviouslyortransformhowdataarelabelled withoutdevelopingfurtherbasedbiases. Ihave learnedfromworking withAITechSolutionsthatthebestwaytoachievemorecorrect andfair AIsystemsisthroughtheemploymentofdiverselyrepresentative datasets.For example,inhealthcare,datadiversitycanavoidthepitfallofsystematicallyprejudicing certain racesorethnicgroupswithbiased adviceonmedicalmatters. TransparentAlgorithmDesign Ofcourse, transparencyisoneof themain issuesinthematterof AIbias. Fordevelopersto successfully makealgorithms,theyare requiredtofocusondevelopmentalgorithmsthat are efficient yettransparent. WhenAIsystemsaremoreexplainabletohumanusers,thereobviouslyisgreaterscopefor usersunderstandingthereasons behinddecisions, andtothatextentdiscoveringandcorrecting biaseswithin anAIsystem. As anAIdesigner comingfrom thetrenches,Iamconvincedthatweneedopen-source frameworksthatencouragepeerreviewand community-drivencollaboration.Themore collaborativedevelopersthinkaboutbiasesofalgorithms,the easieritwillbetorefine and updatethosesystemsovertime. RegularAuditsandAccountability Forthetimebeing,atleast,periodic checksontheAIsystems havetobedonetoovercomethe problem ofAIbias.

  5. ResultsfromtheAIsystemneedtobetestedonwhetherthoseshowbiasedcharacteristicsin decidingvarioustypesofissuesbeforeit.Thattypeofperiodiccheckingwillhelpensure the result throughAIsystemsandinthefinalissues avoidmuchbiasmainlywithcontinuous updatesandthen retrainthemwithnewinformation duein course. PeriodicreviewofAItechsolutionsbyone'sexperienceoften revealssome inadvertentbiases thatcouldcropinasAIsystemsprogressandevolve.Thisapproachensures thattheAI systemsarenotcompromisedintheirintegrityandthesystemsdonotharmbutremain effectiveincarryingouttheirunderpinningfunctions. 4.Ethical guidelinesandhumanoversight TheAIsystemsrequireanappropriateethicalframeworkandhuman review.Developersand teamsmustalsodevelop structuresbasedonfairness,equity,andtransparencyinthecreation andimplementationofAI. Mostimportantly,humanoversight playsamuchmorecriticalrole inthedecision-making process,even incriticalfieldslike criminaljusticeand employment,whereAIcanlead tobiased decisionswithsignificantimplications. Workingattechfirms andinsideAIcompanies, ItendtobelievethatAI,whateveritsfuturemay hold,alwaysneedstobethoughtofasacomplementofhuman decision-makingratherthanits replacement.Humanshaveto stayinvolvedsoAImaybeused responsiblyandethically.

  6. Conclusion:TheWayAhead The connection oftheAIandhumanworld iscomplexand varied.No matterhowsophisticated theseAIsystemsarewithpowerful tool-givingrisetoinnovationandefficiency, by theirvery nature,theyrelyonhumanbiasatmanyjunctures-fromtheverydatacollectionprocessthrough theformulationofalgorithmsandactualdecision-making. Itbecomesveryimportant tounderstandandappreciate that AIbiasoriginatesmuchmorein thecontextofhumanitythanis generallyenvisaged. Throughmy work inAITechSolutions,Ihaveunderstoodthefactthatbias inAIcallsfor interventionatadifferentlevel.Betterwaysfordatacollection,betterAIdesignprocess transparencyofalgorithms,periodaudits,andhumanoversightcan aid movingtowardefficient andfairsystemsbyAI. Somethingweare buildingin termsoftechnologyandhowourbiasesshape itissomething to nowwatchoutfor.Onlythen willitbe possible wheneveryone isinconsciousactionand everyoneis workingtogethertocreatesystemsforgenuineAIbettersuitedandbeneficial fortheoverallinterestsof allhumanbeingsandnotrepeatingtheinequalitiesweseehappeningin thepast. AbouttheAuthor,MohammadAlothman MohammadAlothmanisa leaderinartificialintelligenceand AITechSolutionswithan interest intheethical designandimplementationofAItechnologies. WithexperienceinAIdesignanddevelopmentthroughyears,Mohammad Alothmanhas focusedhiscareerontheconstructionof systemsthat valuefairness,transparency,and accountability. MohammadAlothman’sresearchhasparticularlytouchedareasincustomerservicefor businessesandishelpfulespeciallyinthedevelopmentofresponsible AIpracticesthatdiminish biasandoptimizesolutionstowardbenefitingall.

More Related