1 / 33

Data Analytics Institute In Bangalore

ExcelR is partnered with UNIMAS (University of Malaysia) and TCS to provide international and industry exposure in addition to the data analytics certification.<br>The data analytics curriculum is custom-made to suit the proffesionals as well as freshers. The trainers are veteran in data analytics with a lot of experience and they are efficient to handle the new technologies as well.<br>We are proud to say that we provide 100% placements in top MNC's like E&Y, Accenture, IBM,etc.<br>

Hyush
Download Presentation

Data Analytics Institute In Bangalore

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Association Rules Market Basket Analysis Relationship Mining Affinity Analysis © 2013 ExcelR Solutions. All Rights Reserved

  2. Market Basket Analysis • Large number of transaction records through data collected using bar-code scanners • Each record = All items purchased on a single purchase transaction © 2013 ExcelR Solutions. All Rights Reserved

  3. Association Rules • What item goes with what • Are certain groups of items consistently purchased together • What business strategies will you device with this knowledge © 2013 ExcelR Solutions. All Rights Reserved

  4. Association Rules • Products shelf placement – a specific product beside another • Selling of prominent shelves – Slotting Fees • Stocking – Supply Chain Management • Price Bundling – Combo offers. How? Source: http://www.economist.com/news/business/21654601-supplier-rebates-are-heart-some-supermarket-chains-woes-buying-up-shelves https://en.wikipedia.org/wiki/Association_rule_learning © 2013 ExcelR Solutions. All Rights Reserved

  5. Association Rules – Cell phone faceplates A store sells accessories for cellular phones runs a promotion on faceplates OFFER! Buy multiple faceplates from a choice of 6 different colors & get discount How would you help store managers device strategy to become more profitable © 2013 ExcelR Solutions. All Rights Reserved

  6. Association Rules – Cell phone faceplates List Format Binary Matrix Format Transaction # 1 2 3 4 5 6 7 8 9 10 Faceplate colors purchased Red White White Orange White Blue Red White Red Blue White Blue White Orange Red White Red White Yellow Transaction # 1 2 3 4 5 6 7 8 9 10 Red 1 0 0 1 1 0 0 1 1 0 White 1 1 1 1 0 1 1 1 1 0 Blue 0 0 1 0 1 1 0 1 1 0 Orange Green Yellow 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 Green 0 0 0 0 0 0 0 0 0 1 Orange Blue Blue Green Association Rules are probabilistic “if-then” statements 2 Main Ideas:  Examine all possible “if-then” rule formats  Select rules, which indicates true dependence © 2013 ExcelR Solutions. All Rights Reserved

  7. Association Rules – Cell phone faceplates Rules for { Red, White, Green} 1. If {Red, White} then {Green} Problem • Many rules are possible 2. If {Red, Green} then {White} • How to select the TRUE/GOOD rules from all generated rules? 3. If {White, Green} then {Red} 4. If {Red} then {White, Green} 5. If {White} then {Red, Green} 6. If {Green} then {Red, White} © 2013 ExcelR Solutions. All Rights Reserved

  8. Association Rules – Terminology “IF” part = Antecedent = A “THEN” part = Consequent = C • If {Red, White} then {Green} • If Red & White phone faceplates are purchased, then Green faceplate is purchased  Antecedent: Red & White  Consequent: Green © 2013 ExcelR Solutions. All Rights Reserved

  9. Association Rules – Performance Measures 1 2 3 Support Confidence Lift © 2013 ExcelR Solutions. All Rights Reserved

  10. Association Rules – Support • Consider only combinations that occur with higher frequency in the database • Support is the criterion based on frequency 1 Percentage / Number of transactions in which IF/Antecedent & THEN / Consequent appear in the data Support Mathematically: # transactions in which A & C appear together _____________________________________ Total no. of transactions © 2013 ExcelR Solutions. All Rights Reserved

  11. Support - Calculation Transaction # 1 2 3 4 5 6 7 8 9 10 Faceplate colors purchased White Orange Blue White Blue Blue Orange White White Red White White Red Red White White Red Red Yellow Green Orange Blue Blue Green • What is the support for “if White then Blue”? 1. 4 2. 40% 3. 2 4. 90% • What is the support for “if Blue then White”? 1. 4 2. 40% 3. 2 4. 90% © 2013 ExcelR Solutions. All Rights Reserved

  12. Support - Problem • Generating all possible rules is exponential in the number of distinct items • Solution: Frequent item sets using Apriori Algorithm © 2013 ExcelR Solutions. All Rights Reserved

  13. AprioriAlgorithmFor k products: 1 Set minimum support criteria Generate list of one-item sets that meet the support criterion 2 3 4 5 Use list of one-item sets to generate list of two-item sets that meet support criterion Use list of two-item sets to generate list of three-item sets that meet support criterion Continue up through k-item sets © 2013 ExcelR Solutions. All Rights Reserved

  14. Support – Criterion = 2 Transaction # 1 2 3 4 5 6 7 8 9 10 Faceplate colors purchased White White Orange White Blue Red White Red Blue White Blue White Orange Red White Red White Yellow Item set Support (Count) 5 8 5 3 2 4 3 2 4 3 2 2 2 Red Green {Red} {White} {Blue} {Orange} {Green} {Red, White} {Red, Blue} {Red, Green} {White, Blue} {White, Orange} {White, Green} {Red, White, Blue} {Red, White, Green} Orange Blue Blue Green Create rules from frequent item sets only © 2013 ExcelR Solutions. All Rights Reserved

  15. Support Criterion Example Rules for { Red, White, Green} 1. If {Red, White} then {Green} 2. If {Red, Green} then {White} How good are these rules beyond the point that they have high support? 3. If {White, Green} then {Red} 4. If {Red} then {White, Green} 5. If {White} then {Red, Green} 6. If {Green} then {Red, White} © 2013 ExcelR Solutions. All Rights Reserved

  16. Association Rules – Confidence • Percentage of If/Antecedent transactions that also have the Then/Consequent item set Mathematically: P (Consequent | Antecedent) = P(C & A) / P(A) 2 Confidence # transactions in which A & C appear together _____________________________________ # transactions with A © 2013 ExcelR Solutions. All Rights Reserved

  17. Confidence - Calculation Transaction # 1 2 3 4 5 6 7 8 9 10 Faceplate colors purchased White Orange Blue White Blue Blue Orange White White Red White White Red Red White White Red Red Yellow Green Orange Blue Blue Green • What is the confidence for “if White then Blue”? 1. 4/5 2. 5/8 3. 5/4 4. 4/8 • What is the confidence for “if Blue then White”? 1. 4/5 2. 5/8 3. 5/4 4. 4/8 © 2013 ExcelR Solutions. All Rights Reserved

  18. Confidence - Weakness • If antecedent and consequent have: High Support => High / Biased Confidence © 2013 ExcelR Solutions. All Rights Reserved

  19. Association Rules – Lift Ratio Confidence / Benchmark confidence Benchmark assumes independence between antecedent & consequent: P(antecedent & consequent) = P(antecedent) X P(consequent) Benchmark confidence 3 P(C|A) = P(C & A) / P(A) = P(C) X P(A) /P(A) = P(C) Lift Ratio # transactions with consequent item sets _____________________________________ # transactions in database © 2013 ExcelR Solutions. All Rights Reserved

  20. Interpreting Lift • Lift > 1 indicates a rule that is useful in finding consequent item sets • The rule above is much better than selecting random transactions © 2013 ExcelR Solutions. All Rights Reserved

  21. Lift - Calculation Transaction # 1 2 3 4 5 6 7 8 9 10 Faceplate colors purchased White Orange Blue White Blue Blue Orange White White Red White White Red Red White White Red Red Yellow Green Orange Blue Blue Green • What is the Lift for “if White then Blue”? 1. 4/8 2. 5/10 3. 4/5 4. 1 © 2013 ExcelR Solutions. All Rights Reserved

  22. Rules selection process Generate all rules that meet specified Support & Confidence  Find frequent item sets based on Support specified by applying minimum support cutoff  From these item sets, generate rules with defined Confidence. By filtering remaining rules select only those with high Confidence © 2013 ExcelR Solutions. All Rights Reserved

  23. Rules Inputs Data # Transactions in Input Data # Columns in Input Data # Items in Input Data # Association Rules Minimum Support Minimum Confidence 10 6 6 8 2 70.00% List of Rules Rule: If all Antecedent items are purchased, then with Confidence percentage Consequent items will also be purchased. Antecedent (A) green green white & green orange green red & green red blue Consequent (C) red & white red red white white white white white Support for A 2 2 2 3 2 2 5 5 Support for C 4 5 5 8 8 8 8 8 Support for A & C 2 2 2 3 2 2 4 4 Lift Ratio 2.5 2 2 1.25 1.25 1.25 1 1 Row ID 8 4 6 3 5 7 1 2 Confidence % 100 100 100 100 100 100 80 80 © 2013 ExcelR Solutions. All Rights Reserved

  24. Alarming!  Random data can generate apparently interesting association rules  More the rules you produce, greater the danger  Rules based on large numbers of records are less subject to this danger © 2013 ExcelR Solutions. All Rights Reserved

  25. Profusion of rules © 2013 ExcelR Solutions. All Rights Reserved

  26. Applications • What if Product & Stores are selected as a tuple for analysis? • What if crimes in different geographies for each week is known? Narcotics Public Peace Violation Battery Assault Narcotics Robbery © 2013 ExcelR Solutions. All Rights Reserved

  27. Recap with an example • How can you use the information if you know about the purchase history of customers in a specific geography? • Supermarket database has 100,000 POS transactions • 2000 transactions include both Strepsils & Orange Juice • 800 of the above 2000 include Soup purchases © 2013 ExcelR Solutions. All Rights Reserved

  28. Recap with an example • What is the support for rule “IF (Orange Juice & Strepsils) are purchased THEN (Soup) is purchased on the same trip”? 1. 0.8 % 2. 2 % 3. 40 % • What is the confidence for rule “IF (Orange Juice & Strepsils) are purchased THEN (Soup) is purchased on the same trip”? 1. 0.8 % 2. 2 % 3. 40 % © 2013 ExcelR Solutions. All Rights Reserved

  29. Recap with an example • What is the lift ratio for rule “IF (Orange Juice & Strepsils) are purchased THEN (Soup) is purchased on the same trip”? © 2013 ExcelR Solutions. All Rights Reserved

  30. Sequential Pattern Mining IT IS If person X has taken “Data Mining Unsupervised” training in 1stQuarter, Person X has also taken Supervised” training Quarter Based on the above, recommend Mining Supervised” training to those who have enrolled for “Data Mining Unsupervised” • Mining in “Data 2nd statement “Data • NOT Purchases / events occur at the same time © 2013 ExcelR Solutions. All Rights Reserved

  31. Association Rules vs. Sequential Pattern Mining • Look for temporal patterns • Order/sequence of a & b matters for a rule “b follows a” • However, what happens in between a & b doesn’t matter • In phone faceplates dataset:  Association among items, which were bought within the same week were discovered  How about finding what they would buy next week or the week after, if they had bought ‘x’ in this week? © 2013 ExcelR Solutions. All Rights Reserved

  32. Applications • Identify the appropriate Basket • Identify popular taxi routes  Sequential pattern from GPS tracks; spatiotemporal records of taxi trajectories  First cluster collocated customers © 2013 ExcelR Solutions. All Rights Reserved

  33. THANK YOU © 2013 ExcelR Solutions. All Rights Reserved

More Related