1 / 16

Lecture 17: Bohr Model of the Atom

Lecture 17: Bohr Model of the Atom. Reading: Zumdahl 12.3, 12.4 Outline Emission spectrum of atomic hydrogen. The Bohr model. Extension to higher atomic number. Photon Emission. Relaxation from one energy level to another by emitting a photon. With D E = hc/ l If l = 440 nm,

Jimmy
Download Presentation

Lecture 17: Bohr Model of the Atom

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 17: Bohr Model of the Atom • Reading: Zumdahl 12.3, 12.4 • Outline • Emission spectrum of atomic hydrogen. • The Bohr model. • Extension to higher atomic number.

  2. Photon Emission • Relaxation from one energy level to another by emitting a photon. • With DE = hc/l • If l = 440 nm, DE = 4.5 x 10-19 J Emission

  3. “Continuous” spectrum “Quantized” spectrum Emission spectrum of H DE DE Any DE is possible Only certain DE are allowed

  4. Emission spectrum of H (cont.) Light Bulb Hydrogen Lamp Quantized, not continuous

  5. Emission spectrum of H (cont.) We can use the emission spectrum to determine the energy levels for the hydrogen atom.

  6. Balmer Model • Joseph Balmer (1885) first noticed that the frequency of visible lines in the H atom spectrum could be reproduced by: n = 3, 4, 5, ….. • The above equation predicts that as n increases, the frequencies become more closely spaced.

  7. Rydberg Model • Johann Rydberg extends the Balmer model by finding more emission lines outside the visible region of the spectrum: n1 = 1, 2, 3, ….. n2 = n1+1, n1+2, … Ry = 3.29 x 1015 1/s • This suggests that the energy levels of the H atom are proportional to 1/n2

  8. The Bohr Model • Niels Bohr uses the emission spectrum of hydrogen to develop a quantum model for H. • Central idea: electron circles the “nucleus” in only certain allowed circular orbitals. • Bohr postulates that there is Coulombic attraction between e- and nucleus. However, classical physics is unable to explain why an H atom doesn’t simply collapse.

  9. The Bohr Model (cont.) • Bohr model for the H atom is capable of reproducing the energy levels given by the empirical formulas of Balmer and Rydberg. Z = atomic number (1 for H) n = integer (1, 2, ….) • Ry x h = -2.178 x 10-18 J (!)

  10. The Bohr Model (cont.) • Energy levels get closer together as n increases • at n = infinity, E = 0

  11. The Bohr Model (cont.) • We can use the Bohr model to predict what DE is for any two energy levels

  12. The Bohr Model (cont.) • Example: At what wavelength will emission from n = 4 to n = 1 for the H atom be observed? 1 4

  13. The Bohr Model (cont.) • Example: What is the longest wavelength of light that will result in removal of the e- from H?  1

  14. Extension to Higher Z • The Bohr model can be extended to any single electron system….must keep track of Z (atomic number). Z = atomic number n = integer (1, 2, ….) • Examples: He+ (Z = 2), Li+2 (Z = 3), etc.

  15. Extension to Higher Z (cont.) • Example: At what wavelength will emission from n = 4 to n = 1 for the He+ atom be observed? 2 1 4

  16. Where does this go wrong? • The Bohr model’s successes are limited: • Doesn’t work for multi-electron atoms. • The “electron racetrack” picture is incorrect. • That said, the Bohr model was a pioneering, “quantized” picture of atomic energy levels.

More Related