1 / 24

Garch-m

Garch-m. The process or return is dependent on the volatility. , c are constants. C is the “risk premium parameter”; c>0 indicates the return is positively related to its volatility. Output from Splus m-garch fit garch(x~1+var.in.mean,~garch(1,1)). Estimated Coefficients:

Leo
Download Presentation

Garch-m

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Garch-m • The process or return is dependent on the volatility , c are constants C is the “risk premium parameter”; c>0 indicates the return is positively related to its volatility. K. Ensor, STAT 421

  2. K. Ensor, STAT 421

  3. Output from Splus m-garch fit • garch(x~1+var.in.mean,~garch(1,1)) Estimated Coefficients: -------------------------------------------------------------- Value Std.Error t value Pr(>|t|) C 0.00548675 0.00226173 2.426 7.747e-003 ARCH-IN-MEAN 1.08783589 0.81822755 1.330 9.203e-002 A 0.00008764 0.00002507 3.496 2.494e-004 ARCH(1) 0.12268468 0.02047268 5.993 1.571e-009 GARCH(1) 0.84939373 0.01957565 43.390 0.000e+000 -------------------------------------------------------------- Differs from Tsay’s fit slightly. K. Ensor, STAT 421

  4. Square root Of volatility S&P500 Index K. Ensor, STAT 421

  5. Summary Graphs K. Ensor, STAT 421

  6. Hong Kong stock market index return (bottom graph) and estimated volatility. K. Ensor, STAT 421

  7. garchfit<-garch(HK~-1+arma(1,0),~garch(1,1),cond.dist="t",dist.est=T)garchfit<-garch(HK~-1+arma(1,0),~garch(1,1),cond.dist="t",dist.est=T) • Estimated Coefficients: • -------------------------------------------------------------- • Value Std.Error t value Pr(>|t|) • AR(1) 0.0450 0.04578 0.983 0.163052 • A 0.1688 0.08404 2.009 0.022568 • ARCH(1) 0.1700 0.05835 2.913 0.001871 • GARCH(1) 0.7732 0.06454 11.980 0.000000 • -------------------------------------------------------------- K. Ensor, STAT 421

  8. HK - Garch fit +/- 2SD K. Ensor, STAT 421

  9. K. Ensor, STAT 421

  10. garchfit<-garch(HK~-1+arma(1,0),~garch(1,1),cond.dist="gaussian",dist.est=T)garchfit<-garch(HK~-1+arma(1,0),~garch(1,1),cond.dist="gaussian",dist.est=T) • -------------------------------------------------------------- • Estimated Coefficients: • -------------------------------------------------------------- • Value Std.Error t value Pr(>|t|) • AR(1) 0.1199 0.05709 2.100 1.811e-002 • A 0.1424 0.04834 2.946 1.687e-003 • ARCH(1) 0.1782 0.03693 4.827 9.287e-007 • GARCH(1) 0.7592 0.04913 15.452 0.000e+000 • -------------------------------------------------------------- K. Ensor, STAT 421

  11. K. Ensor, STAT 421

  12. K. Ensor, STAT 421

  13. K. Ensor, STAT 421

  14. Japanese stock market index and volatility based on Gaussian GARCH(1,1) model K. Ensor, STAT 421

  15. garchfit<-garch(JI~-1,~garch(1,1),cond.dist="gaussian",dist.est=T)garchfit<-garch(JI~-1,~garch(1,1),cond.dist="gaussian",dist.est=T) • -------------------------------------------------------------- • Estimated Coefficients: • -------------------------------------------------------------- • Value Std.Error t value Pr(>|t|) • A 0.1352 0.04517 2.993 1.452e-003 • ARCH(1) 0.1713 0.03409 5.024 3.552e-007 • GARCH(1) 0.7708 0.04609 16.722 0.000e+000 • -------------------------------------------------------------- K. Ensor, STAT 421

  16. JI K. Ensor, STAT 421

  17. JI K. Ensor, STAT 421

  18. Let’s trying looking at the multivariate GARCH. K. Ensor, STAT 421

  19. Series 1: Hong Kong Stock Index Series 2: Japanese Stock Index K. Ensor, STAT 421

  20. Series 1: Hong Kong Stock Index Squared Series 2: Japanese Stock Index Squared K. Ensor, STAT 421

  21. ---------------------------------------------------------------------------------------------------------------------------- • Estimated Coefficients: • -------------------------------------------------------------- • Value Std.Error t value Pr(>|t|) • AR(1; 1, 1) 0.124329 0.058850 2.1126 1.757e-002 • AR(1; 2, 2) 0.017088 0.047872 0.3569 3.606e-001 • A(1, 1) 0.144756 0.050129 2.8877 2.027e-003 • A(2, 2) 0.003265 0.006921 0.4718 3.187e-001 • ARCH(1; 1, 1) 0.186976 0.039732 4.7059 1.649e-006 • ARCH(1; 2, 2) 0.069114 0.016141 4.2818 1.117e-005 • GARCH(1; 1, 1) 0.755876 0.050284 15.0320 0.000e+000 • GARCH(1; 2, 2) 0.937297 0.017199 54.4981 0.000e+000 • -------------------------------------------------------------- • mgarchfit=mgarch(X~-1+arma(1,0),~garch(1,1)) Page 367 of text K. Ensor, STAT 421

  22. K. Ensor, STAT 421

  23. K. Ensor, STAT 421

  24. K. Ensor, STAT 421

More Related