1 / 5

Ways Of Structuring The Unstructured Data

Smatrixsoftware is a leading provider of SuiteCRM Customization, helping businesses across various industries to streamline their customer relationship management processes. The company's team of experienced developers and consultants work closely with clients to understand their unique requirements and deliver tailored solutions to meet their specific needs.

Manish132
Download Presentation

Ways Of Structuring The Unstructured Data

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. WaysOfStructuringTheUnstructuredData • TableofContents • OverviewonUNSTRUCTUREDDATA • Examplesshowingchallengesinanalyzingunstructureddata: • ApproachforDATAANALYSIS: • ContentAnalysis: • SentimentAnalysis: • FrameAnalysis: • DiscourseAnalysis: • VisualContentAnalysis: • Conclusion: OverviewonUNSTRUCTUREDDATA Oneofthebiggestchallengesasadataanalysttodayisanalyzingand structuringBigData.Asweknowabout80%ofBigDataisunstructured. Whenwesayunstructureddata,itmeansdatathatcannotbeeasilyformatted tobestoredinatablelikeSQLoranExcelsheet. Someexamplesofunstructureddataareimages,audio,video,andtext messagespostedonsocialmedia.Everyday,1000tera bytesofdatais stored onlinefromaroundtheworld. Forexample,approximately500terabytesofdataaresubmittedadayto Facebookalone.

  2. Examplesshowingchallengesinanalyzing unstructureddata: • Thisdataisverylargeandevenifweconsideronlytextualdata,itisvery difficulttoanalyze,becauseasentenceexpressedbyapersoncanhave differentmeaningsdependingonthecircumstances. • Let'slookatsomeexamples: • Sentence:“Ineedsomespace.” • Context1:Inacrowdedroom,thissentencemightmeanthatsomeone physicallyneedsmoreroomtomovearound. • Context2:Inaromanticrelationship,thissentencemightmeanthatone personwantssomepersonalspaceortimealonetothinkorrelax. • Context3:Inaconversationaboutcomputerstorage,thissentencecould meansomeoneneedsadditionalstoragespaceontheirdevice. • Sentence:“It’scoldin here.” • Context1:Ifsomeonesaysthiswhileshiveringinaroomwiththeair conditioning setverylow,theymean thetemperatureisuncomfortablycold. • Context2:Ifthesamesentenceissaidwhenit’swinteroutside,itmight simplymeanthattheroomisatatypicalindoortemperature. • Context3:Inadiscussionaboutart,someonemightsaythistodescribethe colortoneoratmosphereofapainting,nottheactualtemperature. • Theseexamplesillustratehowthesamesentencecantakeondifferent meaningsdependingonthesituationorcontextinwhichit’sused.

  3. ApproachestoDataAnalysis: • Asweseeitmakesverychallengingtoanalyzeunstructureddata.Letussee somewayswhichcanbeusedtoachievethis: • ContentAnalysis: • Contentanalysisisamethodusedtocarefullyexaminewrittenandrecorded communication.Initially,itwasaboutcountingandmeasuringthingsinthetext, likewordsandthemes. • Sometypesofcontentanalysis are • WordCount:Countthenumberofoccurrencesofagivenwordinthe sentenceunderanalysis. • ConceptualContent Analysis:Inthismethod, welooksforspecificconcept orthemes. • RelationalAnalysis:Inthismethodweneedlooksformeaningful connectionsbetweensentencesandidea. • ReferentialAnalysis:Thismethodconsidersthingslikebackground information,emphasis,and silenceinthe texttounderstanditscomplexityand meaning. • SentimentAnalysis: • SentimentAnalysisisthefieldofCRMthatusesNLPandMachineLearning, togivecomputersanabilitytounderstandtheemotionsexpressedinthetext messageorpostwrittenbyauser. • FrameAnalysis: • Frameanalysisisamethodtoexamineagivenscenariobasedonitsframe.It looksattheperspectiveorcontextinwhichsocialinformationispresentedto shapepublicopinionorunderstanding.

  4. Forexample,seethepictureabove,whichshowshowanimagecanbe associatedwithtwooppositesidesofemotion. DiscourseAnalysis: Discourseanalysisgoesbeyondandabovewordsandsentenceanalysis.It doesnotrelyonjustfindingmeaningofawordandorcountythefrequencyof thewordinasentence,butinsteaditgoesdeeper.Itisaqualitativeanalysis methodthatlooksatthesubjectandit’sunderlyingmeaningofalanguagein writtenorspokenform,withinthecontextinwhichitoccurs. Thismethodusesalanguage’sSocial,Cultural,PoliticalandHistorical backgroundtointerpretameaningofasentence. VisualContentAnalysis: Whilethetextistheprimaryfocusofmostcontentanalysis,visualcontent analysisinvolvesanalyzingimages,videos,andothervisualelementsto extractmeaning,themes,orpatterns.

  5. Conclusion: Inconclusion,wecansaythatonegivensentencecandrawdifferent conclusionsbasedonthecircumstances,therelationshipbetweenthe speakers,andthesubjectofdiscussionandculture.Henceasimplewayof interpretingasentenceandbuildingcodearounditisnotenough. Weneedtowriteadvancedalgorithmstousealloftheabovewaysof analyzingunstructureddataanditeratingthroughitgivingit arefinementevery time,this canbedonebydataanalyst. BuildingAImodelusingmachinelearningisnotataskwhichcanbedonein weeks,itrequirestechnicalexpertiseaswellaslotofefforttobuildalgorithms, preparepre-traineddata,trainmachines,analyzeoutputofalgorithm,re-tune algorithmifneededandrepeat.

More Related