260 likes | 590 Views
Atomistic Modelling of Deformed Polymer Glasses. Alexey Lyulin Group Polymer Physics, Eindhoven Polymer Laboratories and Dutch Polymer Institute, Technische Universiteit Eindhoven, The Netherlands. Participants. TU Eindhoven TU Athens MPI-P Mainz
E N D
Atomistic Modelling of Deformed Polymer Glasses Alexey Lyulin Group Polymer Physics, Eindhoven Polymer Laboratories and Dutch Polymer Institute, Technische Universiteit Eindhoven, The Netherlands
Participants TU EindhovenTU AthensMPI-P Mainz • Thijs Michels Doros Theodorou Nico v.d. Vegt • B. Vorselaars C. Tzoumanekas V. Harmandaris • T. Mulder L. Peristeras • E. de Caluwe • H.E.H. Meijer • L. Govaert IMPB RAN, PuschinoICP RAN, MoscowTver University • N.K. Balabaev M.A. Mazo A.S. Pavlov • E.F. Olejnik I. Neratova
Polystyrene Polycarbonate Motivation Brittle vs. Tough
PS PC PS extension compression PC Stress-strain behaviour • Intrinsic microscopic response vs chemical structure unclear (e.g. H.E.H. Meijer et al., TU/e and DPI)
Thermal and mechanical rejuvenation • Thermal: heating up above Tg,then quenching H.G.H. van Melick, PhD thesis, Eindhoven, 2002
Thermal and mechanical rejuvenation • Mechanical: deformation above the yield point, then compression H.G.H. van Melick, PhD thesis, Eindhoven, 2002
Thermal and mechanical rejuvenation • Thermal: heating up above Tg,then quenching • Mechanical: deformation above the yield point, then compression Bulk mechanics similar Microscopically the same ???? No !
PS vs PC as model amorphous polymers • PS fails brittle, PC tough • PS shows more post-yield stress drop, large strain softening • What is the relation with molecular structure and chain dynamics ?
Equilibration T ~ Tg P = 1 atm PS PC
Characteristic ratio PS PC SANS: Gawrisch, Brereton, Fischer, 1.9-2 simulations: Hutnik, Argon, Suter, 1.6 SANS: Boothroyd et al., 8.7-9.6 simulations: Han and Boyd, 10.2 Sun and Faller, 6.5 (Wittmer, Meyer, Baschnagel, Johner, Obukhov, Mattioni, Müller, Semenov, PRL, 2004)
Cooling down below Tg • Cooling time, c 10 ps (quenched) 25 ns (annealed)
b Orientational mobility polystyrene polycarbonate
Equilibrated films, T =540 K 8x80, 38 Å 32x80, 112 Å 16x80, 65 Å
Orientational mobility film bulk
P2 relaxation-time distribution (CONTIN analysis) -process -process PC AVL, M.A.J. Michels, J. Non-Cryst. Solids2006
Temperature dependence of P2 relaxation times polycarbonate polystyrene T = 300K ~ 500 ps ~ 50 ps <<
Å/ps Uniaxial extension • PS: 4 chains x N=160, 8 chains x N=80 • PC: 64 chains x N=10, 8 chains x N=80 L=110% L=65% L=0 AVL, N.K. Balabaev, M.A. Mazo, M.A.J. Michels, Macromolecules 2004
PS: T << Tg PC:
PS PC Simulation vs. experiment AVL, B. Vorselaars, M. Mazo, N. Balabaev, M.A.J. Michels, Europhys. Lett.2005 H.G.H. van Melick et al., Polymer 2003
annealed quenched polystyrene polystyrene Simulation vs. experiment H.G.H. van Melick, PhD thesis, Eindhoven, 2002 AVL, M.A.J. Michels, Phys. Rev. Lett., 2007
Three time scales for both polymers • cooling: c ~ 10 ps (quenched) << 25000 ps (annealed) • deformation: y ~ 1000 ps • - relaxation: ~ 50 ps (PS) << 500 ps (PC) (PS) c (quenched) (PC) >> c (quenched) c (annealed) >> ,y
Stretching - compression loop: quenched samples • mechanical overaging because of the process • faster for PS, slower for PC • effect is larger for PC
Energy partitioning • mechanically rejuvenated glass is different from thermally rejuvenated glass Energy distribution AVL, M.A.J. Michels, Phys. Rev. Lett., 2007
Summary, questions • Tg, overaging and rejuvenation for typical polymer glasses have been simulated; • Key factors are ratios between three time scales: - relaxation; - cooling time; - deformation time; • Fast relaxation for PS, slow for PC; • Thermal and mechanical rejuvenation are microscopically different • Direct measurement of segmental mobility under mechanical deformation