340 likes | 563 Views
Арифметические и логические основы ЭВМ. Вычислительные системы, сети и телекоммуникации. Система счисления — это способ наименования и изображения чисел с помощью ограниченного набора символов, имеющих определенные количественные значения. Позиционные и непозиционные системы счисления.
E N D
Арифметические и логические основы ЭВМ Вычислительные системы, сети и телекоммуникации Система счисления — это способ наименования и изображения чисел с помощью ограниченного набора символов, имеющих определенные количественные значения. Позиционные и непозиционные системы счисления © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Позиционная система счисления Вычислительные системы, сети и телекоммуникации am-1Pm-1+am-2Pm-2+…+a0P0 + a-1P-1 + a-2P-2 +…+ a-sP-s P - основание системы счисления m - количество цифр в целой части числа s - количество цифр в дробной части © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Позиционная система счисления Вычислительные системы, сети и телекоммуникации Максимальное целое число, которое может быть представлено в m разрядах: © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ Вычислительные системы, сети и телекоммуникации Перевод целых чисел из десятичной системы счисления в двоичную, восьмеричную, шестнадцатеричную: 53:2=(1)26:2=(0)13:2=(1)6:2=(0)3:2=(1)1 1101012= 1*32+1*16+0*8+1*4+0*2+1*1 53:8=(5)6, 658=6*8+5 53:16=(5)3, 3516=3*16+5 © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ Вычислительные системы, сети и телекоммуникации Перевод дробных чисел из десятичной системы счисления в двоичную, восьмеричную, шестнадцатеричную: 0,625*2=(1)250*2=(0)500*2=(1)000, 0,1012 0,625*8=(5)000, 0,58 0,625*16=(10)000, 0,А16 © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование текстовых данных Вычислительные системы, сети и телекоммуникации Каждому символу алфавита сопоставляется определенное целое число, например, порядковый номер Восемь двоичных разрядов – кодирование 256 различных символов: все символы английского и русского языков, как строчные, так и прописные, а также знаки препинания, символы основных арифметических действий и некоторые общепринятые специальные символы, например символ § © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование текстовых данных Вычислительные системы, сети и телекоммуникации ASCII Институт стандартизации США ANSI (American National Standard Institute) ввел в действие систему кодирования ASCII (American Standard Code for Information Interchange) – стандартный код информационного обмена США В системе ASCII закреплены две таблицы кодирования – базовая и расширенная. Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относится к символам с номерами от 128 до 255 © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование текстовых данных Вычислительные системы, сети и телекоммуникации Первые 32 кода базовой таблицы, начиная с нулевого, отданы производителям аппаратных средств (в первую очередь производителям компьютеров и печатающих устройств). В этой области размещаются так называемые управляющие коды, которым не соответствуют никакие символы языков, и, соответственно, эти коды не выводятся ни на экран, ни на устройства печати, но ими можно управлять тем, как производится вывод прочих данных Начиная с кода 32 по код 127 размещены коды символов английского алфавита, знаков препинания, цифр, арифметических действий и некоторых вспомогательных символов © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование текстовых данных Вычислительные системы, сети и телекоммуникации Таблица кодов ASCII © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование текстовых данных Вычислительные системы, сети и телекоммуникации Кодировка символов русского языка, известная как кодировка Windows-1251, была введена «извне» - компанией Microsoft, но, учитывая широкое распространение операционных систем и других продуктов этой компании в России, она глубоко закрепилась и нашла широкое распространение Эта кодировка используется на большинстве локальных компьютеров, работающих на платформе Windows © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование текстовых данных Вычислительные системы, сети и телекоммуникации Верхняя половина кодовой таблицы совпадает с таблицей ASCII Кодовая таблица Windows (CP-1251) © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование текстовых данных Вычислительные системы, сети и телекоммуникации Верхняя половина кодовой таблицы совпадает с таблицей ASCII Альтернативная кодовая таблица (СР866) © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование текстовых данных Вычислительные системы, сети и телекоммуникации Восемь двоичных разрядов – кодирование всего лишь 256 различных символов – ограничение Система, основанная на 16-разрядном кодировании символов, получила название универсальной – UNICODE Шестнадцать разрядов позволяют обеспечить уникальные коды для 65 536 различных символов - этого поля достаточно для размещения в одной таблице символов большинства языков планеты (но все текстовые документы автоматически становятся вдвое длиннее) © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование текстовых данных Вычислительные системы, сети и телекоммуникации UNICODE16 – 65536 последняя версия стандарта Unicode (3.1) использует 4 байта и определяет уже 94140 символов © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование графических данных Вычислительные системы, сети и телекоммуникации Если рассмотреть с помощью увеличительного стекла черно-белое графическое изображение, напечатанное в газете или книге, то можно увидеть, что оно состоит из мельчайших точек, образующих характерный узор, называемый растром Растр – последовательное кодирование всех точек строки и строк кадра Двоичный код для представления графических данных Представление черно-белых иллюстраций в виде комбинации точек с градациями серого цвета Для кодирования яркости любой точки обычно достаточно восьмиразрядного двоичного числа, т.е 256 градаций серого цвета © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование графических данных Вычислительные системы, сети и телекоммуникации Растр – последовательное кодирование всех точек строки и строк кадра Построчная развертка © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование цветных изображений Вычислительные системы, сети и телекоммуникации Цвет и его модели Путем смешивания из небольшого числа базовых или основных цветов можно получить остальные цвета, называемые составными Таким образом, цвет можно математически описать как соотношение базовых компонентов (создать модель цвета) Способ разделения цветового оттенка на составляющие компоненты называется цветовой моделью RGB CMYK HSB L*a*b © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование цветных изображений Вычислительные системы, сети и телекоммуникации • Принцип декомпозиции • RGB – система • R (red) - Красный • G (green) - Зеленый • B (blue) – Синий • 8 бит – каждый цвет • 24 бита – цвет каждой точки • Однозначное определение 16,5 млн. различных цветов © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование графических данных Вычислительные системы, сети и телекоммуникации © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование графических данных Вычислительные системы, сети и телекоммуникации CMYK – система C (cyan) - Голубой M (magenta) - Пурпурный Y (yellow) - Желтый K (black) - черный © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Кодирование графических данных Вычислительные системы, сети и телекоммуникации © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ Вычислительные системы, сети и телекоммуникации ЭВМ © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ Вычислительные системы, сети и телекоммуникации • Правила сложения двоичных цифр • Машинные коды: • Прямой код • Обратный код • Дополнительный код • Модифицированные обратные и дополнительные коды © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Булева алгебра Вычислительные системы, сети и телекоммуникации Утверждения: © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Булева алгебра Вычислительные системы, сети и телекоммуникации © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Булева алгебра Вычислительные системы, сети и телекоммуникации фуксия фуксия+синий+кр синий+кр © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ Вычислительные системы, сети и телекоммуникации Количество функций N от n аргументов Y=f(x1,…,xn) © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ Вычислительные системы, сети и телекоммуникации Таблица функций от одной переменной Y=f(x1) XYj инвертор повторитель © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ Вычислительные системы, сети и телекоммуникации Таблица функций от двух переменных Y=f(x1,x2) Yj X1 X2 © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Законы алгебры логики Вычислительные системы, сети и телекоммуникации Простейшие свойства © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Законы алгебры логики Вычислительные системы, сети и телекоммуникации © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Минимизация логических функций Вычислительные системы, сети и телекоммуникации Y=f(x1, x2, x3) Таблица истинности функции © МЦИТ ГУАП 2008
Арифметические и логические основы ЭВМ. Минимизация логических функций Вычислительные системы, сети и телекоммуникации Аналитический метод – метод Квайна–МакКласки Таблично-графический метод – диаграммы Вейча Диаграмма Вейча функции y © МЦИТ ГУАП 2008