1 / 2

Exploratory Data Analysis (EDA)_ The First Step in Any Data Science Project

<br>Business name: ExcelR- Data Science, Data Analytics, Business Analytics Course Training Mumbai<br>Address: 304, 3rd Floor, Pratibha Building. Three Petrol pump, Lal Bahadur Shastri Rd, opposite Manas Tower, Pakhdi, Thane West, Thane, Maharashtra 400602<br>Phone: 09108238354 <br>Email: enquiry@excelr.com<br>

Saketh4
Download Presentation

Exploratory Data Analysis (EDA)_ The First Step in Any Data Science Project

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ExploratoryDataAnalysis(EDA):TheFirstStepinAnyDataScienceProjectExploratoryDataAnalysis(EDA):TheFirstStepinAnyDataScienceProject EDAisacriticalstepindatasciencethathelpsunderstandthestructure,patterns,and anomalieswithinadataset.DataScienceCourse.Itlaysthefoundationforinformed decision-makingandmodelling.Herearefivekeypoints: • Understanding the Dataset • Purpose:Explorethedataset’sstructure,variables,anddatatypestounderstandits contentandlimitations. • Methods:Usedescriptivestatisticslikemean,median,mode,andstandarddeviation. • Tools:Python’sPandas(info(),describe()),R’ssummary()function,orSQLfor databaseexploration. • IdentifyingMissingandErroneousData • Purpose:Detectandhandlemissingvalues,duplicates,andinconsistenciestoprepare dataforanalysis. • Methods:Checkfornullvalues,outliers,andinvalidentries. • Tools:Pandas(isnull()),Excelfilters,orvisualizationtoolslikeTableau. • Visualizing Data Distributionsand Relationships • Purpose:Usevisualizationstounderstandthedistributionofvariablesandrelationships betweenthem. • Methods: • Univariateanalysis(e.g.,histograms,boxplots). • Multivariateanalysis (e.g.,scatterplots,correlationheatmaps). • Tools:Matplotlib,Seaborn,andPowerBI.

  2. DetectingPatternsandTrends • Purpose:Identifypatterns,trends,oranomaliesthatcouldinfluencetheanalysisor modelperformance. • Methods:Time-seriesanalysis,grouping,andaggregationfortrenddiscovery. • Tools:Python’sgroupby()inPandas,orTableau’sdrag-and-dropinterfaceforvisual trendanalysis. • InformingHypothesesandModelingDecisions • Purpose:Generatehypothesesandinsightstoguidesubsequentmodelingandfeature engineering. • Methods:Combinestatisticalandvisualfindingstodeterminewhichvariablesaremost relevant. • Tools:PythonandRforhypothesistesting,JupyterNotebookfordocumentingEDA workflows. EDAisnotjustaboutinspectingdata;itisaboutuncoveringinsightsandsettingthestagefor effectivedata-drivenproblem-solving.DataScienceCourseinMumbai.ProperEDAensures thatthedatasetisunderstoodandoptimizedforthenextstepsinthedatascienceprocess. Businessname:ExcelR-DataScience,DataAnalytics,BusinessAnalyticsCourseTraining Mumbai Address:304,3rdFloor,PratibhaBuilding.ThreePetrolpump,LalBahadurShastriRd, oppositeManasTower, Pakhdi,ThaneWest,Thane,Maharashtra400602 Phone:09108238354 Email:enquiry@excelr.com

More Related