780 likes | 1.26k Views
Maria Louloudi. Lab of Inorganic Chemistry Department of Chemistry, University of Ioannina , 45110 Ioannina , GREECE. Advanced Catalysis: Biomimetic Oxidation Catalysis . ?. ?. Phenol oxidation. Fine chemistry & Industry.
E N D
Maria Louloudi Lab of Inorganic Chemistry Department of Chemistry, University of Ioannina, 45110 Ioannina, GREECE Advanced Catalysis: Biomimetic Oxidation Catalysis
? Phenol oxidation
Fine chemistry & Industry DEMAND: efficient catalysts for selective oxidationof hydrocarbons under mild conditions alkane oxidation (i.e., CH4 CH3OH, steroid hydroxylation) olefin oxidation Oxidation-degradation of environmental pollutant (i.e.,chlorophenol degradation) GOAL : New oxidation catalysts
Energy saving strategies Catalytic reactions Environmental friendly oxidants Biomimetic Systems Heterogeneous Catalysts
The “Gold Standard” of catalysts • Highly specific • Highly selective • Highly efficient • Catalyze very difficult reactions • N2 NH3 • CO2 + H2O C6H12O6 • Works better in a cell than in a 100000 l reactor Types of Catalysts - Enzymes
Manganese Catalase Core of the active site in Lactobacillus plantarum catalase. Proposed mechanism of H2O2 decomposition by manganese catalase Wu, A. J.; Penner-Hahn, J. E.; Pecoraro, V. L., Chem. Rev. 2004, 104, 903-938
Manganese catalase mimics Structures of some of the ligands used for manganese catalase mimics
Manganese Superoxide Dismutase (Mn-SOD) Superoxide dismutation mechanism for mononuclear Mn-SOD under physiological conditions The active center of Manganese Superoxide Dismutase Holm, R. H.; Kennepohl, P.; Solomon, E. I., Chem. Rev. 1996, 96, 2239-2314
Manganese SOD mimics Structures of some of the ligands used in the synthesis of Mn complexes and manganese complexes for modeling of MnSOD
P-450 Generally accepted mechanism of Catalytic cycle of P-450 Active site of P-450 (X = H2O or OH–) Mansuy, D.; Battioni, P., in Bioinorganic catalysis, Reedijk, J.; Bouwman, E. Ed; Second Edition, Marcel Deker, New York, 1999; pp 323-354
Methane Monooxygenase (MMO) Active site structures of MMOox and MMOred Wallar, B. J.; Lipscomb, J. D., Chem. Rev. 1996, 96, 2625-2657
Bleomycin Schematic representation of the structure of a part of iron bleomycin Bleomycin is an effective antitumor drug. Its antitumor activity is believed to arise from its ability to activate O2 and to cleave DNA oxidatively in a double strand fashion. The active intermediate is a low-spin FeIII–OOH species. Que, L., Jr., in Bioinorganic Catalysis, Reedijk, J. Ed; First Edition, Marcel Dekker; Inc, New York, 1993; p 347
Catechol oxidase Active site structure Generally accepted mechanism of Catechol oxidase B.Krebs et al Nat.Struct.Biol. 5 (1998) 1084 B.Krebs et al J.Biol.Inorg.Chem. 4 (1999) 56 J.Reedijk et al Chem.Soc.Rev. 35 (2006) 814
Manganese, Iron and Copper in Biomimetic Oxidation Catalysis
OXIDANTS Manganese, Iron and Copper in Biomimetic Oxidation Catalysis • Molecular oxygen Ο2 • Hydrogen peroxideΗ2Ο2
Mild oxidant • Cheap • Easily available • Environmental friendly (Η2Ο the only side product) 5.High content of active oxygen (47%) Η2Ο2
Mechanisms of Metal-catalyzed Oxidations: General Considerations Metal–oxygen species
Heterolytic oxygen transfer early transition metals (Mo, W, Re, V, Ti, Zr) later transition metals (Ru,Os) and particularly first row elements (Cr, Mn, Fe) Peroxometal versus oxometal pathways
MΝ(salen) catalysts The epoxidation reaction: Structure of a typical Mn(salen) complex
Jacobsen’s Mn(salen) catalysts Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N., J. Am. Chem. Soc. 1990, 112, 2801-2803 Zhang, W.; Jacobsen, E. N., J. Org. Chem. 1991, 56, 2296-2298 Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L., J. Am. Chem. Soc. 1991, 113, 7063-7064
Berkessel’s imidazole tethered Mn(salen) complex Berkessel, A.; Frauenkron, M.; Schwenkreis, T.; Steinmetz, A., J. Mol. Catal. A-Chem. 1997, 117, 339-346 Jacobsen’s PyO tethered Mn(salen) complex Finney, N. S.; Pospisil, P. J.; Chang, S.; Palucki, M.; Konsler, R. G.; Hansen, K. B.; Jacobsen, E. N., Angew. Chem.-Int. Edit. Engl. 1997, 36, 1720-1723
Katsuki’s conformationally fixed Mn(salen) complex Ito, Y. N.; Katsuki, T., Tetrahedron Lett. 1998, 39, 4325-4328
Mn-porphyrins [Mn(Cl8tdcpp)]+, a “third generation” porphyrin complex Meunier, B., Chem. Rev. 1992, 92, 1411-1456
Manganese-Me3tacn Complexes and Derivatives Schematic structure of dinuclear manganese complexes that can be formed with the ligand Me3tacn ligand under different synthetic conditions de Boer, J. W.; Brinksma, J.; Browne, W. R.; Meetsma, A.; Alsters, P. L.; Hage, R.; Feringa, B. L., J.Am. Chem. Soc. 2005, 127, 7990-7991
Other Mn Complexes Schematic drawing of the ligandstptn and R,R-mcp Brinksma, J.; Hage, R.; Kerschner, J.; Feringa, B. L., Chem. Commun. 2000, 537-538 Murphy, A.; Dubois, G.; Stack, T. D. P., J. Am. Chem. Soc. 2003, 125, 5250-5251
Formation of the peroxycarbonate complex (A) by the direct reaction of peroxymonocarbonate and (B) by the reaction of a peroxy complex with hydrogencarbonate Lane, B. S.; Vogt, M.; DeRose, V. J.; Burgess, K., J. Am. Chem. Soc. 2002, 124, 11946-11954
Manganese Catalysts Containing Phenol-oxazoline Ligands Hoogenraad, M.; Kooijman, H.; Spek, A. L.; Bouwman, E.; Haasnoot, J. G.; Reedijk, J., Eur. J. Inorg.Chem. 2002, 2897-2903
ManganeseCatalystsContainingAcetylacetone-based Schiff Base Ligands Ag. Stamatis, P. Doutsi, Ch. Vartzouma, K.C. Christoforidis, Y. Deligiannakis, M. Louloudi, J. Mol. Catal. A 297 (2009), 44 Ch. Vartzouma, E. Evaggellou, Y. Sanakis, N. Hadjiliadis, M. Louloudi, J. Mol. Catal. A 263 (2007), 77 M. Louloudi, K. Mitopoulou, E. Evaggelou, Y. Deligiannakis, N. Hadjiliadis, J. Mol. Catal. A 198 (2003), 231
Iron Complexes Kim, C.; Dong, Y. H.; Que, L., J. Am. Chem. Soc. 1997, 119, 3635-3636 Chen, K.; Costas, M.; Kim, J. H.; Tipton, A. K.; Que, L., J. Am. Chem. Soc. 2002, 124, 3026-3035 Ryu, J. Y.; Kim, J.; Costas, M.; Chen, K.; Nam, W.; Que, L., Chem. Commun. 2002, 1288-1289
Wada, A.; Ogo, S.; Nagatomo, S.; Kitagawa, T.; Watanabe, Y.; Jitsukawa, K.; Masuda, H., Inorg. Chem. 2002, 41, 616-618 Roelfes, G.; Lubben, M.; Leppard, S. W.; Schudde, E. P.; Hermant, R. M.; Hage, R.; Wilkinson, E. C.;Que, L.; Feringa, B. L., J. Mol.Catal. A-Chem. 1997, 117, 223-227. Roelfes, G.; Lubben, M.; Hage, R.; Que, L.; Feringa, B. L., Chem. Eur. J. 2000, 6, 2152-2159
Copper Complexes Oxidation of 3,5-di-t-butylcatechol (DTBC) to3,5-di-t-butylquinone(DTBQ)withΟ2 (DTBC) oxidation to (DTBQ) with 71% yield D.Zois, Ch. Vartzouma, Y. Deligiannakis, N. Hadjiliadis, L. Casella, E. Monzani, M. Louloudi, J. Mol. Catal. A 261 (2007), 306-317 E. Monzani, L. Quinti, A. Perotti, L. Casella, M. Gullotti, L. Randaccio,S. Geremia, G. Nardin, P. Faleschini, G. Tabbi, Inorg. Chem. 37 (1998) 553–562 M. Gullotti, L. Santagostini, R. Pagliarin, A. Granata, L. Casella, J. Mol.Catal.: A Chem. 235 (2005) 271–284
Catalytic cycle for the oxidation of DTBC by the dinuclear copper(II) complexes with O2 (DTBC) to (DTBQ)with 62% yield M. Louloudi, K. Mitopoulou, E. Evaggelou, Y. Deligiannakis, N. Hadjiliadis, J. Mol. Catal. A 198 (2003) 231–240
HETEROGENEOUSvsHOMOGENEOUSCATALYSIS Easy recovery of the catalyst ADVANTAGES: * * Catalyst protection by the support * Other benefits from the support: reactivity & selectivity * No metal leaching --- environmental friendly procedure * Catalyst reuse * Reduced reactivity of the active catalyst centres DISADVANTAGES: * H2O2 dismutation by the support
Examples of Different Inorganic Supports ΤΑCN complex on silica surface Catalyst immobilized into zeolite “Salen” catalyst into MCM-41 “Salen” catalyst into clay layers
HETEROGENEOUS CATALYSTS Schematic representation of supported metal complexes : heterogeneous catalysts
The Active Catalyst Synthetic strategy
Supported homogeneous catalysts The same coordination environment & immobilization by covalent bond encapsulation Immobilization on a membrane
Silica modification via sol-gel procedure The same coordination environment & immobilization by covalent bond
Possible evolution of a simple Q-type center during sol-gel reaction: 15different species can be detected
Development and condensation of silicon-centeres during the gel formation are also pH-dependent
Synthetic strategy The Active Catalyst
Synthetic procedures of supported metal complexes used as heterogeneous catalysts
Preparation of an organically modified mesoporous silica via sol-gel methodology
Synthesis of silicon-precursors • Hydrosililation 2. Nucleophilic abstraction of halogens
Synthesis of silicon-precursors 3. Grignard-reactions 4. Condensation reactions