1 / 13

1 S. Gojuki , K. Sonoda, Y. Hiratsuka and S. Oryu

A Three-Body Faddeev Calculation of the Double Polarized 3 He(d,p) 4 He Reaction in the Super Low-Energy Region. 1 S. Gojuki , K. Sonoda, Y. Hiratsuka and S. Oryu Department of Physics, Tokyo University of Science 1 SGI Japan Ltd. Agenda. Introduction What’s interesting?

aaron
Download Presentation

1 S. Gojuki , K. Sonoda, Y. Hiratsuka and S. Oryu

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Three-Body Faddeev Calculation of the Double Polarized 3He(d,p)4He Reaction in the Super Low-Energy Region 1S. Gojuki, K. Sonoda, Y. Hiratsuka and S. Oryu Department of Physics, Tokyo University of Science 1SGI Japan Ltd.

  2. Agenda • Introduction • What’s interesting? • What’s our purpose? • How to calculate the 3He(d,p)4He reaction? • Three body Faddeev theory • Potentials • Results • Summary

  3. IntroductionWhat’s Interesting? • What’s interesting for the 3He(d,p)4He in super low-energy region? • Nucleosynthesis in Universe • Nuclear-Fusion Power Generation • Mirror Reaction of the 3H(d,n)4He • Neutronless reaction • Polarization effects Nucleosynthesis http://grin.hq.nasa.gov/ TOKAMAK http://www.fusionscience.org

  4. S-wave S-wave 3He 3He d d n n n n p p p p p p IntroductionWhat’s our Purpose? Double Parallel Polarization Jπ=1/2+ Jπ=3/2+ The 3/2+ state can be set by the double parallel polarization. 3/2+ Resonance Get the cross section enhancement !? T.W.Bonner et al., Phys.Rev.88,473 (1952), W.H.Geist et al., Phys.Rev.C60,054003-1 (1999)

  5. How to calculate the 3He(d,p)4He reaction? • Five nucleon Problem • (Big degree of freedom) • Select three clusters (3He, p, and n) • (Because of super low energy) • Potentials • (p-n, p-3He, and n-3He) • Three cluster Faddeev calculation • (Reduce the degree of freedom) p-3He p-n n-3He

  6. Three Cluster Faddeev Equation Faddeev Equation Separable Expansion (reduce degree of freedom) Amado-Lovelace-Mitra Equation We calculate this equation on the each energy.

  7. Potential p-n M.Lacombeet al., Phys. Rev. C21 (1980) 861 • Paris Potential (EST expanded) • One of the most popular nucleon-nucleon potential 3S1 1S0 3D1 Exp. A :R.A.Arndt, L.D.Roper, R.A.Bryan, R.B.Clark, B.J.VerWest, and P.Signell, Phys. Rev. D28, 97 (1983) Exp. B : R.A.Arndt, J.S.Hyslop III, and L.D.Roper, Phys. Rev. D35, 128 (1987)

  8. Potentials p-3He, n-3He • Base Theory • Resonating Group Method(RGM) I.Reichstein,P.R.Thompson,and Y.C.Tang., Phys. Rev. C3, 2139 (1971) H.Kanad and T.Kaneko., Phys. Rev. C34, 22 (1986) • Pauli Principle • Orthogonal Condition Model S.Saito, Prog. Theor. Phys. 40, 893 (1968) S.Saito, Prog. Theor. Phys. 41, 705 (1969) • Separable Potential • EST Expansion D.J.Ernst,C.M.Shakin,and R.M.Thaler, Phys. Rev. C8, 46 (1973) Just theory!

  9. Potential p-3He ○;T.A.Tombrello, Phys.Rev.138,B40(1965) □;D.H.Mc Sherry and S.D.Baker, Phys.RevC1,888(1970) △;J.R. Morales, T.A. Cahill, and D.J. Shadoan, Phys.Rev..C11,1905(1975) ◊;D.Müller, R.Beckmann, and U. Holm, Nucl.Phys.A311,1.(1978) +;L.Beltrmin, R.del Frate, and G. Pisent, Nucl.Phys.A442,266(1985) ●;Y.Yoshino, V.Limkaisang, J.Nagata, H.Yoshino, and M.Matsuda, Prog. Theor.Phys.103,107(2000) Resonating Group Method & Orthogonal Condition Model EST Expansion 1S0

  10. Potential n-3He Resonating Group Method & Orthogonal Condition Model EST Expansion 1S0

  11. Total Cross Sectionp-n: 1S0, 3S1-3D1 ,p-3He: 1S0 ,n-3He: 1S0 p-n: 1S0(rank=3 or 5), 3S1-3D1(rank=4 or 6 or 8) p-3He: 1S0(rank=3) ,n-3He: 1S0(rank=3) x2.2 Converged! p-n: 1S0(rank=1), 3S1-3D1(rank=1) p-3He: 1S0(rank=3) ,n-3He: 1S0(rank=3) p-n: 1S0(rank=1 or 3), 3S1-3D1(rank=1 or 4) p-3He: 1S0(rank=1) ,n-3He: 1S0(rank=1) Polarized Total Cross Section Unpolarized Total Cross Section Total Jπ=1/2(+-) – 9/2(+-)

  12. Total Cross Sectionp-n: 1S0, 3S1-3D1 ,p-3He: 1S0 ,n-3He: 1S0 Jπ=3/2+ Polarized Jπ=3/2+ Unpolarized Jπ=1/2+ Polarized Jπ=3/2- Unpolarized Jπ=1/2- Unpolarized Jπ=5/2-Polarized Jπ=5/2- Unpolarized Jπ=5/2+ Unpolarized Jπ=1/2- Polarized Jπ=3/2- Polarized Jπ=5/2+ Polarized Jπ=1/2+ Polarized The 375keV peak is made from the 3/2+ state!

  13. Summary • The double parallel polarization effects • The total cross section in the 375 keV grows up to 2.2 times by the double parallel polarization effects. • The 3/2+ peak is found by the 1S0 rank=3 of the N-3He potential. • The more realistic 4He structure is important. • But the peak is not broad…(experiment is broad. ) • Future • More exact two-body potential (higer rank and partial wave) • Internal Coulomb effect (Now: only initial and final states)

More Related