340 likes | 673 Views
Lecture 15 – Iron Ocean Chemistry. Iron Distributions Iron Speciation and Solubility. See: Johnson, Gordon and Coale (1997) What controls dissolved iron concentrations in the world ocean? Marine Chemistry, 57, 137-161. The Biogeochemical Cycle of Iron in Seawater. Biological component.
E N D
Lecture 15 – Iron Ocean Chemistry Iron Distributions Iron Speciation and Solubility See: Johnson, Gordon and Coale (1997) What controls dissolved iron concentrations in the world ocean? Marine Chemistry, 57, 137-161
The Biogeochemical Cycle of Iron in Seawater Biological component Biochemistry and Physiology Concentrations of and exchange between different Fe species Chemical component Ecosystem structure, Fe and C inputs, exports, and internal cycling Ecological/Physical/Geochemical component
Vertical Profiles of Selected Metals in the North Pacific Ocean (from Butler (1998) Science, 281, 207)
All Fe data as of 1997 (Johnson et al, 1997) coastal What are key features?
Dissolved Fe model (Johnson et al 1997) Vertical flux of POC FC = F100 (Z/100)-b Q = Fe/C Remineralization Flux PFe = Q FC/Z = (b/100-b) QF100 Z-(1+b) = 45 Q F100 Z-1.858 Scavenging sink = RFe = kFe [(Fe) – (Fe)solubility] where Fesolubility = 0.6 nmol kg-1 Fe/t = 45 Q F100 Z-1.858 - kFe [(Fe) – (Fe)soly] + KZ 2Fe/Z2 remineralization scavenging mixing
Average Surface Ocean Nitrate HNLC : High Nitrate Low Chlorophyll Due to Fe limitation??
Fe dissolved EqPac results (1992) Meridional section across equator at 140°W. Is there an Fe maximum in the EUC??? What is the EUC?? Fe particulate
Equatorial Undercurrent during Kilo 0625 sө(EUC) = 25.0 to 25.5 ADCP From P. Dutrieux (Hawaii)
Origin of the Equatorial Undercurrent (EUC)
1nm 10nm 0.1m 1m 10m 100m soluble species colloids particulates iron oxide mineral What constitutes “bioavailable” iron in seawater? Fe(III)' - Fe(OH)2+ Fe(OH)30 Fe(OH)4- Fe(II)' - Fe2+ FeCO30 organic detritus
Inorganic speciation of iron – hydrolysis reactions Metals are acids For a homogeneous system: FeT = [Fe3+] + [FeOH2+] + [Fe(OH)2+] + [Fe(OH)3º] + [Fe(OH)4-] Hydrolysis Reactions Fe3+ + H2O = FeOH2+ + H+ log *K1 = -2.2 FeOH2+ + H2O = Fe(OH)2+ + H+ log *K2 = -3.4 or log *b2 = -5.6 Fe(OH)2+ + H2O = Fe(OH)3º + H+ log *K3 = -6.8 Fe(OH)3º + H2O = Fe(OH)4- + H+ log *K4 = -9.1
Heterogeneous System – Mass Balance with Iron Solubility Mass balance: FeT = [Fe3+] + [FeOH2+] + [Fe(OH)2+] + [Fe(OH)3º] + [Fe(OH)4-] FeT = [Fe3+] + [Fe3+] *K1/H+ + [Fe3+] *b2/(H+)2 + [Fe3+] *b2 / (H+)3 + [Fe3+] *b4 / (H+)4 FeT = [Fe3+] { 1 + *K1/H + *b2/H2 + *b3/H3 + *b4/H4 } aFe3+ = Fe3+ / FeT Solubility product of iron oxide is written as: Fe(OH)3am = Fe 3+ + 3 OH- 3 OH- + 3 H+ = 3 H2O or Fe(OH)3am + 3H+ = Fe3+ + 3 H2O *KSO = 103.2 = [Fe3+] / (H+)3 Then: FeT = (*KSO (H)3 ) { 1 + *K1/H + *b2/H2 + *b3/H3 + *b4/H4 }
Example: What is the solubility of Fe(OH)3(s) in terms of the uncharged dissolved species, Fe(OH)3º? Add two reactions: Fe(OH)3(s) + 3H+ = Fe3+ + 3 H2O log K = 3.2 Fe3+ + 3H2O = Fe(OH)3º + 3H+ log K = -12.4 ------------------------------------------------------------------- Fe(OH)3 (s) = Fe(OH)3º log K = -9.2 K = Fe(OH)3º / Fe(OH)3(s) ≈ Fe(OH)3º 0 Dissolved Fe = Fe(OH)3º = 10-9.2 M
Solubility diagram for iron oxide Fe in deep seawater = 0.7 x 10-9M = 10-9.15 Solubility minimum at pH 8
Organic Ligands (see Rue and Bruland, 1995) Organic Ligand Reactions Fe3+ + Ln- = FeL K = [FeL] / [Fe3+] [Ln-] = 1026.5 for Desferol The ligands (L) can be made by (an iron chelating siderophore) both bacteria and plankton so: FeL = K [Fe3+] [Ln-] Then: FeT = Fe’ + FeL (inorganic species) (organic species) FeT = [Fe3+] { 1 + *K1/H + *b2/H2 + *b3/H3 + *b4/H4 + KFeL [L]} Example assuming a ligand concentration Ln- = 0.44nM = 10-9.35M and pH = 8 FeT = [Fe3+] ( 1 + 105.8 + 1010.3 + 1011.5 + 1010.4 + 1017.5) Then: Fe’ = 0.0039% FeL = 99.996% Rue and Bruland (1995) analyzed natural seawater and found Fe’ = 0.03% FeL = 99.97% In surface SW most Fe is chelated!
Much of dissolved iron is colloidal (from Wu et al (2001) Science, 293, 847)
Concentration of soluble (<0.02mm) ligands in the eastern North Atlantic. (Wu et al (2001) Science 293, 847)
Metallenzymes containing Iron and other transition Metals. From Butler (1998) Science, 281, 207.
Fe – redox/photo chemistry
Example Calculation The MgSO4° ion pair MgSO4° = Mg2+ + SO42-log K = -2.4 = 4 x 10-3 K = (MgSO4°) / (Mg2+)(SO42-) MgT = Mg2+ + MgSO4° = 50 x 10-3 M SO4T = 28 x 10-3 M Answer: 11% of MgT is MgSO4 21.5% of SO4T is MgSO4