1 / 51

Solutions stationnaires des équations de Navier-Stokes en domaines extérieurs

Solutions stationnaires des équations de Navier-Stokes en domaines extérieurs. Peter Wittwer Département de Physique Théorique Université de Genève. reading : R. P. Feynman, Vol. II G. K. Batchelor, An Introduction to Fluid Mechanics L. Landau, E. Lifchitz, Mécanique des fluides

abba
Download Presentation

Solutions stationnaires des équations de Navier-Stokes en domaines extérieurs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Solutions stationnaires des équations de Navier-Stokes en domaines extérieurs Peter Wittwer Département de Physique Théorique Université de Genève

  2. reading: R. P. Feynman, Vol. II G. K. Batchelor, An Introduction to Fluid Mechanics L. Landau, E. Lifchitz, Mécanique des fluides M. Van Dyke, An Album of Fluid Motion collaborations: Guillaume Van Baalen Frédéric Haldi Sebastian Bönisch Vincent Heuveline

  3. Introduction to the problem • Asymptotic analysis • Applications

  4. Exterior Flows

  5. Navier-Stokes

  6. Re=0.16

  7. Re=1.54

  8. Re=56.5

  9. Re=118

  10. Re=7000

  11. Case of finite volume

  12. Case of infinite volume, I

  13. Case of infinite volume, II

  14. Asymptotic analysis

  15. Results (d=2)

  16. Interpretation:

  17. Results (d=3)

  18. Two steps: • construct downstream asymptotics • dynamical system • invariant manifold theory • renormalization group • universality • determines asymptotics everywhere

  19. Vorticity:

  20. Vorticity equation

  21. Fourier transform

  22. Diagonalize

  23. Stable and unstable modes

  24. use contraction mapping principle

  25. Large time asymptotics:

  26. Two steps: • construct downstream asymptotics • dynamical system • invariant manifold theory • renormalization group • universality • determines asymptotics everywhere

  27. Determines asymptotics everywhere:

  28. Applications in collaboration with: Sebastian Bönisch Rolf Rannacher Vincent Heuveline Heidelberg & Karlsruhe

  29. Adaptive boundary conditions

  30. To second order:

  31. Comparison with Experiment:

  32. Cloud Microphysics and Climate M. B. Baker, SCIENCE, Vol. 276, 1997

  33. Work in progress: • d=2 case with lift (numerical) • d=2 second order asymptotics (theory) • d=3 (numerical) • d=2, 3: free fall problem (numerical) • d=3 case with rotation at infinity (theory; see P. Galdi • (2005) for recent results) • Other research groups: • d=2 time periodic (theory)

More Related