1 / 18

Agile Enterprise Data Management: Terms, Models, Universal Warehouses

Agile Enterprise Data Management: Terms, Models, Universal Warehouses. Phasic Systems Inc www.phasicsystemsinc.com 703-945-1378. Phasic Systems Inc Management. Geoffrey Malafsky, Ph.D , Founder and CEO Research scientist

abeni
Download Presentation

Agile Enterprise Data Management: Terms, Models, Universal Warehouses

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Agile Enterprise Data Management: Terms, Models, Universal Warehouses Phasic Systems Inc www.phasicsystemsinc.com 703-945-1378

  2. Phasic Systems Inc Management • Geoffrey Malafsky, Ph.D, Founder and CEO • Research scientist • Supported many organizations in their quest to access the right information at the right time • Tim Traverso, SVP Federal • Former Technical Director, Navy Deputy CIO • Kevin Moran VADM (Ret), COO • Former Deputy Chief of Naval Personnel • Marshall Maglothin, SVP HealthCare • Deborah Malafsky SVP Business Development

  3. Our Agile Methods • Why be Agile? • Provide flexibility and adaptability to changing business needs while maintaining accuracy and commonality • Segmented approach is too slow, rigid, and costly • How? • Treat data lifecycle as one continuous operation from governance to modeling to integration to warehouses to Business Intelligence • Emphasize value produced at each step and overall coordination • Seamlessly fit with existing organization, procedures, tools but add Agility, commonality, flexibility, and reduced cost and time • We are Agile and comprehensive • Typical 60-90 day engagement • Deliver completed products not just plans or partial results

  4. Methods and Tools • DataStar Discovery: Agile system modeling, data modeling, data semantics • Policy, governance, standards and design • Fully integrated metadata: each element, table includes attributes for business, IT, and BI • Point-select data models, codes, rules, in Data Lifecycle Model • Easily build common term standards using all variations with clear understanding of business use scope, meaning • Rapid collaborative agreement; line-of-sight to operations • DataStar Unifier: Agile Implementation • Agile warehousing and aggregation • Simplified, common semantics using Corporate NoSQL™ • Aggregate data using all use case and system variations simply and easily into standard or NoSQL databases • Universal warehouse with flexibility, extensibility, adaptability

  5. PSI Customer Testimonial: VADM (ret) J. “Kevin” Moran “As a COO of a Wall Street firm and a former US Navy Vice Admiral in charge of a large integrated organization of thousands of people and numerous IT systems, I have seen firsthand the critical role that high-quality enterprise data plays in day-to-day operations of an organization. Without timely access to reliable and trusted data all of our operations were vulnerable to poor decision making, weak performance, and a failure to compete. With Phasic Systems Inc.’s agile methodology and technology, we were finally able to solve our data challenges at a fraction of the time, cost, and organizational turmoil that all the previous and more expensive, time-consuming approaches failed to do.”

  6. Agility Across the Data Life Cycle Traditional ►Slow (9-24 months) ► Fractious (business, IT, BI) ► Expensive ► Inflexible ► Poor practical semantic mapping Products ►Data models (all) ► Unifying, concise Data System Model ► Glossaries ► Codes ►Semantic mapping (data, XML, Legacy, SOA) ► Feed MDM, BI ► Universal Data Warehouse ►Managed governance – integration - analytics Agile EDM ►Fast (1-3 months) ► Coordinated (business, IT, BI) ► Large decrease $ ► Flexible (daily) ► Easy, adaptive semantic mapping

  7. Agile: Overcome Hurdles • Group rivalry • Embrace important business variations; recognize no valid reason to force everyone to use only one view exclusively. • Terminology confusion • Use a guided framework of well-known concepts to rapidly identify, and implement variations as related entities. • Poor knowledge sharing • Use integrated metadata where important products (business models, data models, glossaries, code lists, and integration rules) are visible, coordinated, and referenceable • Inflexible designs • Use a hybrid approach (Corporate NoSQL™) for Agile warehousing and integration blending traditional tables and NoSQL for its immense flexibility and inherent speed

  8. Data Meaning Not Just Metadata Governance Integration CEO/CFO/CIO SAP/IBM/ORACLE Design MDM Sales, Accounting Ontologies Must be agile in order to adapt quickly to new business needs • Continuous change is norm: requirements, consolidation • We must use all the important business variations of key terms (e.g. account, client, policy) – No such thing as single version for all! Which Value? Whose? My “customer” or your “customer”? How is data used?

  9. Data System Model

  10. Real Estate Listing Example • Seems simple and well-defined • Each house has a type, id, address, etc.. • Industry standards: OSCRE, RETS • Yet, data systems are very different • Data model tied tightly to business workflow • Extensions and “make-it-work” changes added over time • Similar to customer relationship mgmt, ERP, and many other fields

  11. Main Hurdle to Enterprise Data Standards and Warehouse: Data Values Not Synchronized with Metadata Different Meanings (Legal and Business Activities) NKY HomeSeekers Texas

  12. Fully Integrated Metadata for Business, IT, and BI

  13. Corporate NoSQL™ • NoSQL gives large systems flexibility & high performance • Simple key-value pairs: little data modeling • Inherent hardware performance: no database joins (10000x faster) • But, poorly suited for corporate use – lacks connection to business • Corporate NoSQLTM • Blends traditional techniques and NoSQL • Tables provide direct alignment to business concepts • Key-value pairs eliminate need to delineate every attribute • Business driven terminology in production model • Easily handles semantic variations • Updates do not require changes to data models or physical stores

  14. Position Data Model

  15. Results • Applied to production data: • Fully cleaned & integrated data governance approved • Requirement: 500,000 records in 2 hrs on Sun E25K • Actual: 50 minutes on 3 year low-cost server • Governance documents produced and approved • Legacy data models – first time in ten years • Common data model – directly derived from ontology. Position-Resume model • Standing governance board created with short decision-making monthly meetings • Position-Resume Governance Board • Process approach and technology applied to new IT systems

More Related