230 likes | 351 Views
Chebychev , Hoffding , Chernoff. Histo 1. X = 2*Bin(300,1/2) – 300 E[X] = 0. Histo 2. Y = 2*Bin(30,1/2) – 30 E[Y] = 0. Histo 3. Z = 4*Bin(10,1/4) – 10 E[Z] = 0. Histo 4. W = 0 E[W] = 0. A natural question:.
E N D
Histo 1 X = 2*Bin(300,1/2) – 300 E[X] = 0
Histo 2 Y = 2*Bin(30,1/2) – 30 E[Y] = 0
Histo 3 Z = 4*Bin(10,1/4) – 10 E[Z] = 0
Histo 4 W = 0 E[W] = 0
A natural question: • Is there a good parameter that allow to distinguish between these distributions? • Is there a way to measure the spread?
Variance and Standard Deviation • The variance of X, denoted by Var(X) is the mean squared deviation of X from its expected value m = E(X): • Var(X) = E[(X-m)2]. • The standard deviation of X, denoted by SD(X) is the square root of the variance of X.
Computational Formula for Variance Claim: Var(X) = E[(X-m)2]. Proof: E[ (X-m)2] = E[X2 – 2m X + m2] E[ (X-m)2] = E[X2] – 2m E[X] + m2 E[ (X-m)2] = E[X2] – 2m2+ m2 E[ (X-m)2] = E[X2] – E[X]2
Properties of Variance and SD • Claim: Var(X) >= 0. Pf: Var(X) = å (x-m)2 P(X=x) >= 0 • Claim: Var(X) = 0 iff P[X=] = 1.
Chebyshev’s Inequality Theorem: X is random variable on sample space S, and P(X=r) it’s probability distribution. Then for any positive real number r: (proof in book) In words: the probability of finding a value of X farther away from the mean than r is smaller than the variance divided by r^2. r
Example: What is the probability that with 100 Bernoulli trials we find more than 89 or less than 11 successes when the prob. of success is ½. X counts number of successes. EX=100 x ½ =50 V(X) = 100 x ½ x ½ = 25. P(|X-50|>=40)<=25/40^2 = 1/64
Popular form (same) • “k standard deviations”
Hoffding (1963) • Let be random variables that for
, , Chernoff
Example • What is the probability of getting 25 or fewer heads in 100 coin tosses?