1 / 20

НОВЫЕ РЕЗУЛЬТАТЫ В ИССЛЕДОВАНИИ ПЫЛЕВОЙ ПЛАЗМЫ В УСЛОВИЯХ МИКРОГРАВИТАЦИИ

НОВЫЕ РЕЗУЛЬТАТЫ В ИССЛЕДОВАНИИ ПЫЛЕВОЙ ПЛАЗМЫ В УСЛОВИЯХ МИКРОГРАВИТАЦИИ.

abiba
Download Presentation

НОВЫЕ РЕЗУЛЬТАТЫ В ИССЛЕДОВАНИИ ПЫЛЕВОЙ ПЛАЗМЫ В УСЛОВИЯХ МИКРОГРАВИТАЦИИ

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. НОВЫЕ РЕЗУЛЬТАТЫ В ИССЛЕДОВАНИИ ПЫЛЕВОЙ ПЛАЗМЫ В УСЛОВИЯХ МИКРОГРАВИТАЦИИ Липаев А.М.(1), Молотков В.И.(1), Наумкин В.Н.(1), Петров О.Ф.(1), Ивлев А.В.(2), Морфилл Г.Е.(2), Томас Х.М.(2), Храпак С.А.(2), Виноградов П.В.(3), Крикалев С.К.(3), Тюрин М.В.(3),Маленченко Ю.И.(4), Райтер Т.(5) (1)Объединенный институт высоких температур РАН, Москва, Россия (2)Институт внеземной физики Общества М. Планка, Гархинг, Германия (3)РКК-«Энергия», Королев, Россия (4)Центр подготовки космонавтов им. Ю.А. Гагарина, Звездный, Россия (5)Европейский космический центр, Кельн, Германия Москва,Президиум РАН, 27 ноября 2008

  2. Outline Science Goals of PK-3 Plus PK-3 Plus experimental setup Results: Electrorheological plasmas – string fluid formation Two phase flow – lane formation 3D phase transition crystal – liquid Conclusion

  3. PK-3 Plus Science Goals • Ordered structures in 3D complex plasma in a weak electric field • Crystal-liquid-gas phase transitions in 3D isotropic complex plasma system • Structural phase transitions in 3D complex plasma under external actions • Linear and nonlinear waves in 3D complex plasma including shock waves, instabilities • Transport of microparticles • Boundaries in complex plasmas • Decharging

  4. The Plasma Chamber High homogeneity of plasma parameters due to electrodes design Perfect observation conditions due to glass walls High homogeneity of temperature due to construction design 2D 3D • 13.56 Mhz RF power driven large disk electrodes • Wide ground rings around the electrodes • Guard rings hold 3 dispensers each • The dispensers provide 14.91; 9.19; 6.81; 3.42; 2.55 m melamine formaldehyde and 1.55 m silica mono disperse particles

  5. turbomolecular pump inside the container provides HV conditions in the 10-6 mbar range continuous gas flow for stable high purity gas conditions pressure control – baratron, piezo, pirani 2 gas reservoirs filled with Ar and Ne RF control – voltage, current (measured on electrodes) function generator 0 – 255 Hz, -55V – +55 drives electrodes independently with sinusoidal, square, triangle etc. shapes 4 progressive scan cameras (up to 50 Hz frame rate) horizontal translation stage vertical translation stage digital storage of 4 analogue video signals on hard disks PK-3 Plus hardware

  6. Laboratory Onboard Accommodation • experiment hardware enveloped in safety housing and connected to outside prevacuum port at transfer compartment • telescience unit includes ruggedized laptop and 4 digital video recorders • LCD video monitor allows control by operator PK-3 Plus, Yu. Malenchenko (2008)

  7. ion drift + + + + + - - + + - ion drift ion drift • At zero field particles interact via classic Debye-Hückel potential Electrorheological plasma • Ion drift generates the positive ion wake Morfill & Thomas, JVST 1996 Hayashi & Tachibana JVST 1996 Schweigert et al PRE 1996 Lipaev et al, JETP, 1997 • The ac fieldEext with frequencyf: fdust << f << fioncauses ions reactinstantaneously but grains do not react • Field-induced interactions in complex plasmas are identical to interactions in conventional ER fluids with dipoles d = 0.65Qλvion/vth (Ivlev A.V. et al. PRL100,095003,2008) • We can manipulate interparticle interaction via ion velocity vion by electric field PK-3 Plus, Th. Reiter (2006)

  8. Kinetics of strings formation Time of string fluid recreation is about 15 seconds PK-3 Plus, F. Yurchihin (2006)

  9. Two phase flow Dispensers test : 14.9, 9.2, 6.8, 3.4, 2.5, 1.5 µm particles diameter PK-3 Plus, V. Tokarev (2006)

  10. Colloids – Lane Formation Strongly interacting colloidal mixture consisting of oppositely driven particles Nonequilibrium transition towards lane formation (Rayleigh-Taylor instability) Lane formation is a generic process and occurs: Colloidal suspensions Ions migrating within 2D membranes Pedestrian zones Complex plasmas force J. Chakrabarti et al., PHYSICAL REVIEW E 70, 012401 (2004)

  11. Quasi continuous flow PK-3 Plus, Yu. Malenchenko (2007)

  12. Reentrance effect in complex plasma lanes • lane formation experiments were made at different conditions • increasing interaction potential prevents lane formation J. Chakrabarti et al., PHYSICAL REVIEW E 70, 012401 (2004)

  13. Penetration of 1.55μm particles through 2.55μm particles cloud

  14. The plasma crystal in ground lab melts while pressure decreases The plasma crystal in space lab melts while pressure increases Crystal-Liquid Phase Transition PK-3 Plus, Yu. Malenchenko (2007) P=13.6 Pa (pressure decreases) P=11.3 Pa (pressure minimum) P=14.7 Pa (pressure increases) P=20.9 Pa (pressure maximum)

  15. Without external field Pair distribution function g(r) Crystal 1.55 μm grains Argon pressure 11.7 Pa Frame size 8136 x 5932.8 μm Dependences of K and pressure on time Liquid 1.55 μm grains Argon pressure 21.1 Pa Frame size 8136 x 5932.8 μm K=g(rmin)/g(rmax)=0.2 - crystallization point Frenkel & McTague Ann.Rev.Phys.Chem. 1980

  16. Phase diagram

  17. Phase transition search for 2.55μm particles cloud

  18. With low frequency external field (255Hz) Pair distribution function g(r) Crystal 1.55 μm grains Argon pressure 11.3 Pa Frame size 8136 x 5932.8 μm Dependences of K and pressure on time Liquid 1.55 μm grains Argon pressure 21 Pa Frame size 8136 x 5932.8 μm K= 0.2 - crystallization point Frenkel & McTague Ann.Rev.Phys.Chem. 1980

  19. Conclusions • The experiments with PK-3 Plus show the perfect functioning of the apparatus • Structural phase transition was discovered • Lane formation was investigated at different complex plasma parameters • Crystal-liquid phase transition was obtained in large 3D isotropic complex plasma system • PK-3 Plus provides much better insights into the properties of complex plasmas

  20. Vinogradov P.V.PK-1, PK-3 Plus • Soloviev A.Ya.PK-1 • Budarin N.M.PK-1, PK-3 twice • Musabaev T.A.PK-1, PK-3 • Baturin Yu.M.PK-2, PK-3 • Avdeev S.V.PK-2 • Padalka G.I.PK-2, PK-3 • Kalery A.Yu.PK-2, PK-3 • Zaletin S.V.PK-2 • Krikalev S.K.PK-3 twice • Gidzenko Yu.P.PK-3 twice • Shepherd W.PK-3 • Usachev Yu.I.PK-3 • Tyurin M.V.PK-3, PK-3 Plus • Dezhurov V.N.PK-3 • Onufrienko Yu.I.PK-3 • Kozeev K.M.PK-3 • Haignere C.PK-3 • Tretschev S.E.PK-3 • Korzun V.G.PK-3 • Malenchenko Yu.I.PK-3, PK-3 Plus twice • Sharipov S.Sh.PK-3 • Tokarev V.I.PK-3 • Reiter T.PK-3 Plus twice • Yurchichin F.N.PK-3 Plus • Kotov O.V.PK-3 Plus • Volkov S.A.PK-3 Plus • Kononenko O.V.PK-3 Plus MPE and IHED scientific teams are very much appreciated to all specialists from DLR, Roscosmos, RSCE “Energia”, Gagarin Cosmonaut Training Centre, Moscow Mission Control Centre, Kayser-Threde who made possible “Plasma Crystal” experiments. Very special thanks to cosmonauts who made the decisive steps in the experiments realization from January 1998

More Related