690 likes | 992 Views
Review of Antimicrobial Agents Part I. Siriluck Anunnatsiri, MD, MCTM, MPH Infectious Diseases & Tropical Medicine Department of Medicine Khon Kaen University. Classification of Antimicrobial Agents. -lactam antibiotics:
E N D
Review of Antimicrobial AgentsPart I Siriluck Anunnatsiri, MD, MCTM, MPH Infectious Diseases & Tropical Medicine Department of Medicine Khon Kaen University
Classification of Antimicrobial Agents • -lactam antibiotics: Penicillins, Cephalosporins, Carbapenems, Monobactams, -lactam/-lactamases inhibitors • Aminoglycosides • Macrolides • Ketolides: Telithromycin, Dirithromycin • Lincosamides: Lincomycin, Clindamycin • Quinolones • Chloramphenicol
Classification of Antimicrobial Agents • Tetracyclines, Tigecycline • Sulfamethoxazole/Trimethoprim (SMX/TMP) • Glycopeptides: Vancomycin, Teicoplanin • Oxazolidinones: Linezolid • Fosfomycin • Fusidic acid • Polymyxins: Polymyxin B, Colistin • Metronidazole
Classification of Antimicrobial Agents • Lipopeptide: Daptomycin • Streptogramins: Quinupristin-Dalfopristin -lactam antibiotics Aminoglycosides Glycopeptides
Structure Spectrum Mechanisms of action Mechanism of resistance Pharmacokinetic Absorption Distribution Metabolism Elimination Pharmacodynamic Drug interaction Side effect Antimicrobial Properties
Beta-lactams Antibiotic: Basic Structure Aminoacyl Thiazolidine ring Dihydrothiazine ring Hydroxyethyl
Beta-lactams Antibiotic: General Properties • Inhibit cell wall synthesis • Bactericidal effect • Time-dependent bactericidal action • Inoculum effect on antimicrobial activity is more prominent • In GNB - No or short PAE for most -lactam • Share -lactam class allergic reaction except monobactams
PD Parameters affecting Antibiotic Potency AUC/MIC >125 for GNB >25-50 for GPC Cmax/MIC >10 > 40-50% of dosing interval
Inoculum Effect • The effect of inoculum size on antimicrobial activity • Dense population can be less susceptible to -lactams • Failure to express receptor (PBP) • High concentration of -lactamases • Trend to presence of resistant subpopulation
Postantibitic Effect • A persistent suppression of growth after levels have fallen below the MIC
Bacterial Cell Wall Synthesis Hiramatsu K. Lancet Infect Dis 2001; 1: 147-155
Bacterial Cell Wall Synthesis (Transpeptidase) Hiramatsu K. Lancet Infect Dis 2001; 1: 147-155
Beta-lactams Antibiotic : Mechanism of Action Hiramatsu K. Lancet Infect Dis 2001; 1: 147-155
Beta-lactams Antibiotic : Mechanism of Resistance • -lactamases destruction of antibiotic • Failure of antibiotic to penetrate the outer membrane of gram-negative to reach PBP target • Efflux of antibiotic across the outer membrane of gram-negative • Low-affinity binding of antibiotic to PBP target
Beta-lactams Antibiotic: Adverse Reactions • Hypersensitivity – 3 to 10 % • Irritability, jerking, confusion, seizures– especially with high dose penicillins and imipenem • Leukopenia, neutropenia, thrombocytopenia – therapy > 2 weeks • Interstitial nephritis • Cephalosporin-specific: cefamandole, cefotetan, cefmetazole, cefoperazone, moxalactam • Hypoprothrombinemia - due to reduction in vitamin K-producing bacteria in GI tract
Penicillins: Classification • Natural penicillins Penicillin V, Penicillin G • Aminopenicillins Ampicillin, Amoxicillin • Penicillinase-resistant penicillins Cloxacillin, Dicloxacillin, Nafcillin, Methicillin • Carboxypenicillins Carbenicillin, Ticarcillin • Ureidopenicillin Piperacillin, Azlocillin, Mezlocillin
Natural Penicillins: Spectrum of Activity Gram-positive Gram-negative S. pneumoniaeNeisseriameningitidis Streptococcus sp. Enterococcus sp. Anaerobes C. diphtheriae Above the diaphragm B. anthracis Clostridiumperfringens L. monocytogenes Other Treponema pallidum Leptospira sp.
Penicillinase-Resistant Penicillins: Spectrum Gram-positive MSSA MSSE Streptococcus sp.
Aminopenicillins: Spectrum of Activity Gram-positive Gram-negative Streptococcus sp. Proteus mirabilis Enterococcus sp. Salmonella sp. L. monocytogenes Shigella C. diphtheriae some E. coli H. influenzae N. meningitidis Anaerobes Above the diaphragm Clostridiumperfringens
Carboxypenicillins: Spectrum of Activity Gram-positiveGram-negative Streptococcus sp. Proteus mirabilis C. diphtheriae Salmonella sp. Shigella E. coli H. influenzae Neisseria sp. Anaerobes Enterobacter sp. Fairly good activity P. aeruginosa Citrobacter sp. Serratia sp.
Ureidopenicillins: Spectrum of Activity Gram-positiveGram-negative Streptococcus sp. Proteus mirabilis Enterococcus sp. Salmonella sp. L. monocytogenes Shigella E. coli Klebsiella sp. H. influenzae Neisseria sp. Anaerobes Enterobacter sp. Fairly good activity P. aeruginosa S. marcescens
Penicillins: Pharmacology • Administration – Oral, IV, IM • Varying oral absorption 40% for Ampicillin 75% for Amoxicillin • Varying protein binding • 17% for aminopenicillin 97% for dicloxacillin • More free drugs in the presence of probenecid • Mainly excrete via renal tubular cells, which can be blocked by probenecid.
Penicillins: Pharmacology • Dose adjustment is needed when CCr < 10-20 ml/min, on hemodialysis or CVVH • Biliary excretion is important only for nafcillin and antipseudomonal penicillins. • Well distributed to most tissues, high concentration in urine and bile • Relatively insoluble in lipid and penetrate cells relatively poorly
1st Generation Cephalosporins: SpectrumBest activity against gram-positive aerobes, with limited activity against a few gram-negative aerobesGram-positiveGram-negativeMSSA EnterobacteriaceaeStreptococcus sp. 2nd Generation Cephalosporins/Cephamycins: Spectrum • More active against gram-negative aerobes • Cephamycin group has activity against gram-negative anaerobes including Bacteroides fragilis
3rd Generation Cephalosporins: Spectrum • Increase potency against gram-negative aerobes • Ceftriaxone and cefotaxime have the best activity against MSSA and Streptococcus sp. • Ceftazidime, moxalactam, cefixime, and ceftibuten have less activity against MSSA • Ceftazidime, cefoperazone, and cefsulodin have activity against P. aeruginosa.
4th Generation Cephalosporins: Spectrum • Extended spectrum of activity • gram-positives: similar to ceftriaxone • gram-negatives: Enterobacteriaceae including cephalosporinase-producer, P. aeruginosa. • Stability against -lactamases; poor inducer of extended-spectrum -lactamases
Cephalosporins: Pharmacology • Polar, water-soluble compounds • Administration – IM, IV, oral, intraperitoneum • High oral bioavailability • Varying protein binding – 10% -> 98% • Largely confined to extracellular compartment, relatively poor intracellular concentration • Good CNS penetration – Only 3rd & 4th gen. cephalosporins • Almost excrete via renal tubular secretion, except ceftriaxone and cefoperazone are largely eliminated via biliary route
Carbapenems • Imipenem • N-formimidoyl derivative of thienamycin • Need to combine with cilastatin to prevent renal dehydropeptidase I hydrolysis and nephrotoxic effect • Meropenem, Ertapenem • -1-methyl, 2-thio pyrrolidinyl derivative of thienamycin
Carbapenems: Spectrum of Activity • Most broad spectrum of activity of all antimicrobials • Have activity against gram-positive and gram-negative aerobes, anaerobes, Nocardia sp., rapid-growing mycobacteria • Bacteria not covered by carbapenems include MRSA, MRSE, E. faecium, C. difficile, S. maltophilia, B. cepacia • Ertapenem not active against P. aeruginosa and Acinetobacter sp.
Carbapenems: Pharmacology • Absorbed poorly after oral ingestion • T1/2: • Imipenem, Meropenem 1 hr • Ertapenem 4 hr • Well distributed to body compartment and penetrate well into the most tissues • Excrete via renal, dosage adjustment is required in patient with impaired renal function. • Need supplement dose in patient performing CVVH, hemodialysis
-Lactam/-Lactamase Inhibitor • Ampicillin/sulbactam (A/S) • Amoxicillin/clavulanate (A/C) • Ticarcillin/clavulanate (T/C) • Piperacillin/tazobactam (P/T) • Cefoperazone/sulbactam (C/S)
-Lactam/-Lactamase Inhibitor: Spectrum • Maintain spectrum of -Lactams but enhance activity against -Lactamase (Ambler class A) producing organisms • Activity against MSSA, Streptococcus sp., Enterococcus sp. (Except C/S),-Lactamase producing Enterobactericeae, P. aeruginosa (Only P/T, C/S), Anaerobes.
-Lactam/-Lactamase Inhibitor: Pharmacology • Clavulanate, Sulbactam – Moderately well absorbed • Good tissue distribution • Penetration into inflamed meninges • Clavulanate, Sulbactam – Poor • Tazobactam – Good in animal model • Excretion • Clavulanate – Lung, feces, urine • Sulbactam, Tazobactam - Urine
Monobactams • Aztreonam • Bind primarily to PBP 3 in Enterobacteriaceae, P. aeruginosa, and other gram-negative aerobes • No activity against gram-positive or anaerobic bacteria • Low incidence of drug hypersensitivity; no cross-reaction with other -Lactams • Weak -Lactamase inducer
Aminoglycosides: Basic Chemical Structure Aminocyclitol Ring
Aminoglycosides: Mechanism of Resistance Adenyltransferase Acetyltransferases Phosphotransferases
Aminoglycosides: Spectrum of Activity • Gram-Negative Aerobes • Enterobacteriaceae, P. aeruginosa, Acinetobacter sp.- Kanamycin & Gentamicin groups • F. tularensis, Brucella sp., Y. pestis - Streptomycin, gentamicin • N. gonorrhoeae - Spectinomycin • Mycobacteria • M. tuberculosis – Streptomycin, kanamycin, amikacin • Non-tuberculous – Amikacin, streptomycin
Aminoglycosides: Spectrum of Activity • Gram-Positive Aerobes(In vitro synergy) S. aureus, S. epidermidis, viridans streptococci, Enterococcussp. • Nocardia sp. - Amikacin • E. histolytica, C. parvum - Paromomycin
Aminoglycosides: Pharmacology • Bactericidal effect • Concentration dependent killing • Little influence by inoculum effect • Presence of PAE effect • Administration – IV, IM, intrathecal, intraperitoneum, inhale, oral (neomycin, paromomycin), topical • Low level of protein binding (10%), high water solubility, lipid insolubility
Aminoglycosides: Pharmacology • 99% of drug is excreted unchanged by glomerular filtration • 5% of excreted drug is reabsorbed at renal proximal tubule
Once-Daily Aminoglycosides • Equal efficacy compared to multiple-dose administration • May lower but not eliminate risk of drug-induced nephrotoxicity and ototoxicity • Simple, less time consuming, and more cost effective • Does not worsen neuromuscular function in critically ill ventilated patients • Probably should not be used in enterococcal endocarditis • Need further study in pregnancy, cystic fibrosis, GNB meningitis, endocarditis, and osteomyelitis
Aminoglycosides: Adverse Effects • Neuromuscular blockage • Nephrotoxicity • Reversible if detection early • Risk factors: prolonged trough level, volume depletion, hypotension, underlying renal dysfunction, elderly, other nephrotoxins • Ototoxicity • Cumulative dose • 8th cranial nerve damage - irreversible • Vestibular toxicity: dizziness, vertigo, ataxia • Auditory toxicity: tinnitus, decreased hearing (high frequency)
Glycopeptides • Vancomycin • Teicoplanin
Glycopeptides: Mechanism of Action Hiramatsu K. Lancet Infect Dis 2001; 1: 147-155
Glycopeptides: Mechanism of Resistance in S. aureus Hiramatsu K. Lancet Infect Dis 2001; 1: 147-155
Glycopeptide-resistant S. aureus NCCLS = The National Committee for Clinical Laboratory Studies BSAC = The British Society for Antimicrobial Chemotherapy
Glycopeptide-resistant S. aureus • Recommend using MIC determination for confirmation of VISA, GISA, or VRSA isolates • Heteroresistance phenomenon: Hetero-VRSA • Only a subpopulation of S. aureus can grow on vancomycin-containing agar (>8 g/ml) • Precursor of VISA/VRSA isolates • Population analysis is needed to identify hetero-VRSA