160 likes | 304 Views
微波工程期中報告. 主題 : Generalized Analysis of Coupled Lines in Multilayer Microwave MCM-D Technology—Application: Integrated Coplanar Lange Couplers 報告人 : 碩研電子一甲 M9930201 朱士豪.
E N D
微波工程期中報告 主題: Generalized Analysis of Coupled Lines in Multilayer MicrowaveMCM-D Technology—Application: Integrated Coplanar Lange Couplers 報告人: 碩研電子一甲M9930201 朱士豪 Philip Pieters, Student Member, IEEE, Steven Brebels, Student Member, IEEE, Eric Beyne,and Robert P. Mertens, Fellow, IEEE IEEE “Generalized Analysis of Coupled Lines in Multilayer MicrowaveMCM-D Technology—Application: Integrated Coplanar Lange Couplers” TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 9, SEPTEMBER 1999
摘要 • 在一個沉積型多層薄膜多晶片模組(MCM-D)上設計與實現平面的藍澤藕合器 。 • MCM-D技術在高速數位電路中,對微波元件整合與互連上的益處已獲公認。 • 被動結構,如螺旋電感,濾波器和耦合器,在MCM-D與微波單體集成電路相比可以實現高效率和更具成本效益。 • 提出一個普遍和有效的方法計算出所需的模態特徵阻抗及相關幾何參數的一種多層微波耦合線拓撲結構。 • 用描述的方法,共面藍澤耦合器已經實現,然後測量。比較測量結果和惠普動勢模擬,並指出設計和整合這些元件在MCMD上的可行性。
簡介 • 電信系統對便攜式的演變,不斷增加高密度封裝技術的需求和不斷增長的類比數位混合模擬應用一直是增加研究薄膜多層技術的重點,如沉積型多晶片模組技術(MCM-D)。 • 這項技術主要用於高速數位應用的互連,因為優良的工藝和尺寸控制允許這種技術將用於射頻和微波應用。 • 蘭澤耦合器已被證明是微波集成電路的應用。這耦合器很容易耦合3dB在一個大的頻寬,並且由蘭格首次提出。 • 設計方法和修改此耦合器已經被提出。然而,所有的人都認為只有微帶結構。主要缺點是耦合器製造必要的連接線難以穿過狹窄,密集線條與空間。當使用多層的MCM - D技術,這項缺點因使用孔連接在另一金屬層而獲得改善。還有利於降低生產成本。此外,通過孔的連接使脆弱的連接線更穩定。
多層膜耦合線的共面結構 Fig.1 MCM-D共面耦合器截面圖。接地與浮動導體可調整,浮動導體延伸至So中間,每邊可比藕荷線大25μm ( ) 資料出處:Philip Pieters, Student Member, IEEE, Steven Brebels, Student Member, IEEE, Eric Beyne,and Robert P. Mertens, Fellow, IEEE IEEE, “Generalized Analysis of Coupled Lines in Multilayer MicrowaveMCM-D Technology—Application: Integrated Coplanar Lange Couplers”, TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 9, SEPTEMBER 1999
Fig.2 層與嵌入式導體的幾何結構。Sk , Sl為向量的定義。 資料出處:Philip Pieters, Student Member, IEEE, Steven Brebels, Student Member, IEEE, Eric Beyne,and Robert P. Mertens, Fellow, IEEE IEEE, “Generalized Analysis of Coupled Lines in Multilayer MicrowaveMCM-D Technology—Application: Integrated Coplanar Lange Couplers”, TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 9, SEPTEMBER 1999
Fig.3 浮動金屬片在(a)但不和(b)特性阻抗空間模態的設計共面耦合線幾何圖。(均在20GHz, Si內部間距30和500 μm接地面寬)。 。 資料出處:Philip Pieters, Student Member, IEEE, Steven Brebels, Student Member, IEEE, Eric Beyne,and Robert P. Mertens, Fellow, IEEE IEEE, “Generalized Analysis of Coupled Lines in Multilayer MicrowaveMCM-D Technology—Application: Integrated Coplanar Lange Couplers”, TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 9, SEPTEMBER 1999
Fig.4(a) 偶模藕荷線有效介電常數設計空間幾何圖。(在20GHz, Si內部間距30和500 μm接地面寬) 資料出處:Philip Pieters, Student Member, IEEE, Steven Brebels, Student Member, IEEE, Eric Beyne,and Robert P. Mertens, Fellow, IEEE IEEE, “Generalized Analysis of Coupled Lines in Multilayer MicrowaveMCM-D Technology—Application: Integrated Coplanar Lange Couplers”, TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 9, SEPTEMBER 1999
Fig.4(b) 奇模藕荷線有效介電常數設計空間幾何圖。(在20GHz, Si內部間距30和500 μm接地面寬) 資料出處:Philip Pieters, Student Member, IEEE, Steven Brebels, Student Member, IEEE, Eric Beyne,and Robert P. Mertens, Fellow, IEEE IEEE, “Generalized Analysis of Coupled Lines in Multilayer MicrowaveMCM-D Technology—Application: Integrated Coplanar Lange Couplers”, TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 9, SEPTEMBER 1999
共面蘭澤耦合器 COPLANAR LANGE COUPLER Fig.5平面MCM -D蘭澤耦合器俯視圖。不同段的蘭澤耦合器使用通道連接在下層的金屬面。同一類型的通道也用於接地面的連接。 資料出處:Philip Pieters, Student Member, IEEE, Steven Brebels, Student Member, IEEE, Eric Beyne,and Robert P. Mertens, Fellow, IEEE IEEE, “Generalized Analysis of Coupled Lines in Multilayer MicrowaveMCM-D Technology—Application: Integrated Coplanar Lange Couplers”, TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 9, SEPTEMBER 1999
Fig.6共面耦合線與耦合器長度的有效電壓耦合係數。耦合器的最佳長度為 Lopt= 2100 μm。 資料出處:Philip Pieters, Student Member, IEEE, Steven Brebels, Student Member, IEEE, Eric Beyne,and Robert P. Mertens, Fellow, IEEE IEEE, “Generalized Analysis of Coupled Lines in Multilayer MicrowaveMCM-D Technology—Application: Integrated Coplanar Lange Couplers”, TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 9, SEPTEMBER 1999
Fig.7 典型多層微波MCM-D結構用於整合被動結構。 Table.120GHz蘭澤耦合器在MCM-D結構計算出的模態參數和相關的尺寸。 資料出處:Philip Pieters, Student Member, IEEE, Steven Brebels, Student Member, IEEE, Eric Beyne,and Robert P. Mertens, Fellow, IEEE IEEE, “Generalized Analysis of Coupled Lines in Multilayer MicrowaveMCM-D Technology—Application: Integrated Coplanar Lange Couplers”, TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 9, SEPTEMBER 1999
Fig.8多層薄膜MCM-D共面蘭澤耦合器實體圖。 資料出處:Philip Pieters, Student Member, IEEE, Steven Brebels, Student Member, IEEE, Eric Beyne,and Robert P. Mertens, Fellow, IEEE IEEE, “Generalized Analysis of Coupled Lines in Multilayer MicrowaveMCM-D Technology—Application: Integrated Coplanar Lange Couplers”, TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 9, SEPTEMBER 1999
Fig.9 藍澤耦合器4port惠普動勢與典型量測比較。(a)輸入反射S11(b)耦合輸出S21。 資料出處:Philip Pieters, Student Member, IEEE, Steven Brebels, Student Member, IEEE, Eric Beyne,and Robert P. Mertens, Fellow, IEEE IEEE, “Generalized Analysis of Coupled Lines in Multilayer MicrowaveMCM-D Technology—Application: Integrated Coplanar Lange Couplers”, TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 9, SEPTEMBER 1999
Fig.10 藍澤耦合器4port惠普動勢與典型量測比較。(c)通過輸出S31(d)獨立輸出S41。 資料出處:Philip Pieters, Student Member, IEEE, Steven Brebels, Student Member, IEEE, Eric Beyne,and Robert P. Mertens, Fellow, IEEE IEEE, “Generalized Analysis of Coupled Lines in Multilayer MicrowaveMCM-D Technology—Application: Integrated Coplanar Lange Couplers”, TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 9, SEPTEMBER 1999
結果 Fig.11 兩個主要輸出的惠普動勢與典型量測比較與水平相位差。 資料出處:Philip Pieters, Student Member, IEEE, Steven Brebels, Student Member, IEEE, Eric Beyne,and Robert P. Mertens, Fellow, IEEE IEEE, “Generalized Analysis of Coupled Lines in Multilayer MicrowaveMCM-D Technology—Application: Integrated Coplanar Lange Couplers”, TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 9, SEPTEMBER 1999
結論 • 從開始一般的分析耦合線的多層技術,設計共面蘭澤耦合器整合在薄膜多層的MCM-D已經呈現。 • 蘭澤耦合器基本結構所需共面藕荷線的幾何參數與電性參數通過了這些圖片可視化。 • 這種方式實現了20 GHz的蘭澤耦合器,網絡分析儀測量結果與惠普動量勢模擬進行了比較並顯示很好的一致性。這表明MCM-D技術有可能實現被動微波結構出色的效率和成本效益。