590 likes | 801 Views
Chapter 4: Steady-State Data Reconciliation for Bilinear Systems. Distillate flow, F 2. x 2,1 x 2,2. Feed flow, F 1. x 1,1 x 1,2. Bottom flow, F 3. x 3,1 x 3,2. F 2. x 2,1 x 2,2. F 1. x 1,1 x 1,2. F 3. x 3,1 x 3,2. Figure 4.1. Minimize. (4.1). subject to.
E N D
Chapter 4:Steady-State Data Reconciliation for Bilinear Systems
Distillate flow, F2 x2,1 x2,2 Feed flow, F1 x1,1 x1,2 Bottom flow, F3 x3,1 x3,2
F2 x2,1 x2,2 F1 x1,1 x1,2 F3 x3,1 x3,2 Figure 4.1
Minimize (4.1) subject to where F is the vector of the measured flow rates, , Vf and Vx are the variance matrices corresponding to the measurements of the flow rates and the compositions, respectively, and x1 and x2 are the composition vectors
Stream 1 2 3 Component 1 2
F2 x2,1 x2,2 F1 x1,1 x1,2 F3 x3,1 x3,2 Figure 4.1
Cold stream return Hot stream F1, T1 F3, T3 F2, T2 F4, T4 Hot stream return Cold stream
F1, T1 F3, T3 F2, T2 F4, T4 Figure 4.2
F1, T1 F3, T3 F2, T2 F4, T4 Figure 4.2
F1, T1 F3, T3 F2, T2 F4, T4 Figure 4.2
Distillate flow, F2 x2,1 x2,2 Feed flow, F1 x1,1 x1,2 x3,1 x3,2 Bottom flow, F3
Component balances F2 x2,1 x2,2 Normalization equations F1 x1,1 x1,2 F3 x3,1 x3,2 Figure 5.1
(5.11) (5.12)
Q1 Q2 R1 0
F2 x2,1 x2,2 F1 x1,1 x1,2 F3 x3,1 x3,2 Figure 5.1
********************************************************* f=[0;0;0;0;0]; Q1=[0 0;0 0;0 0;0 0;0 0]; Q2=[0 0 0;0 0 0;0 0 0;0 0 0;0 0 0]; V=[0 0 0 0 0 0 0;0 0 0 0 0 0 0;0 0 0 0 0 0 0;0 0 0 0 0 0 0;0 0 0 0 0 0 0;0 0 0 0 0 0 0;0 0 0 0 0 0 0]; V(1,1)=0.0548^2; V(2,2)=0.0239^2; V(3,3)=0.0244^2;