200 likes | 223 Views
Learn the fundamentals of polynomials, including classifying based on terms, understanding monomials, binomials, and trinomials, calculating degrees, writing in standard form, plus adding and subtracting. Practice examples demonstrate operations and multiplication methods, guiding you through the key concepts. Develop a strong foundation in polynomial algebra starting from the basics.
E N D
Warm UpIntroduction to Polynomials and Adding and Subtracting Polynomials
Classifying Polynomials: We classify polynomials based on the number of _________. terms What is a monomial? A polynomial with only 1 term. What is a binomial? A polynomial with 2 terms. A polynomial with 3 terms. What is a trinomial? When do we use the term polynomial? We use the term polynomial to describe any expression which contains some combination of variables and numbers.
What is a term? Terms are made up of numbers, variables or the product and/or quotient of some combination of numbers and variables. EXAMPLE: 2x is a term. (the product of a # and variable) 2x/3 is a term. (the quotient of a # and variable) - + Terms are separated by ________ and ________ signs!
Classify each of the polynomials • 3x2y + 3x + 4y • 2x2y4z • 2xy2 + 3x2y + 9x • 5x2y + 2xy3 Trinomial Monomial Trinomial Binomial
Calculating the degree of a polynomial.. If it is a single variable term, find the term with the largest exponent. 5x3 + 9x2 + x This is a 3rd degree polynomial. 1 Remember the understood 1!!! If it is a multi-variable term, you add the exponents of all of the variables. 4x2y + 2xy3 + 9 This is a 4th degree polynomial (3+1=4). Don’t forget the understood 1’s!!!! 1 1
Calculate the degree of the polynomial… • 6x2 + 4x + 4x3 + x • 21x2y + 12x4y2 + 2xy4 • 3x2 + 2y3 3rd degree 6th degree 3rd degree
Writing a polynomial in standard form… • Standard form is in descending order of the x variable. • 2xy3 + 3x2y + x3 • 3xy2 + 3x3 + 2x2y X3 + 3x2y + 2xy3 3x3 + 2x2y + 3xy2
Adding and Subtracting Polynomials… is nothing more than combining like terms. Remember you can do this vertically or horizontally. • (2x2 - 3x + 3) + (4x2 + 5x - 9) • (3x2 - 9x - 5) - (-2x2 - 4x + 5) 6x2 + 2x -6 5x2 - 5x - 10 5(x2 - x - 2)
Ex 1 (x2 + 3x + 4) + (-2x2 + 10x - 5) Combine LIKE terms x2 + 3x + 4 -2x2 + 10x - 5 -1x2 + 13x - 1 Final Answer
Ex 2. (4b3 - 2b) + (b3 + 6b2 + 3b - 7) 4b3 + 0b2 - 2b + 0 b3 + 6b2 + 3b - 7 5b3 + 6b2 + 1b - 7 Final Answer
Ex 3. (12y2 - 8y + 4) - (9y2 + 5y + 1) Don’t forget to Distribute the -1!! (12y2 - 8y + 4) - 1(9y2 + 5y + 1) (12y2 - 8y + 4) - 9y2- 5y - 1 12y2 - 8y + 4 - 9y2- 5y - 1 3y2 - 13y + 3 Final Answer
Ex 4. (3a3 + 10a - 15) - (-a3 + 2a2 + 6a - 9) (3a3 + 10a - 15) - 1(-a3 + 2a2 + 6a - 9) 3a3 + 10a - 15 + a3 - 2a2- 6a + 9 3a3 + 0a2 + 10a - 15 +a3 - 2a2 - 6a + 9 4a3 - 2a2 + 4a - 6 Final Answer
POLYNOMIAL MULTIPLICATION (2x - 3)(x + 5) 3 methods • Distribute (2x - 3)(x + 5) *4 multiplications 2x2+ 10x- 3x - 15 (then combine like terms) 2x2+ 10x - 3x - 15 2x2 + 7x - 15 Final Answer
b. 3rd grade style 2x - 3 x + 5 +10x - 15 2x2 - 3x + 0 2x2 + 7x - 15 Final Answer!
c. Box Method 2x - 3 x 2x2-3x + 5 +10x -15 2x2 + 7x - 15 Final Answer
Ex 5. (4x + 7)(3x + 7) a.) 12x2+ 28x+ 21x + 49 12x2 + 49x + 49 b.) 4x + 7 c.) 4x + 7 3x + 7 3x 12x2 +21x +28x + 49 + 7 +28x + 49 12x2 + 21x + 0 12x2 + 49x + 49
Ex 6. (x - 1)(x2 - 4x + 6) • x3- 4x2+ 6x - 1x2+ 4x- 6 x3 - 5x2 + 10x - 6 b. x2 - 4x + 6 c. x2 - 4x + 6 x - 1 x x3 -4x2 +6x -1x2 + 4x - 6 -1 -1x2 +4x - 6 1x3 -4x2 + 6x + 0 x3 - 5x2 + 10x - 6 x3 - 5x2 + 10x - 6
Ex 7. (2z2 + 3z - 4)(4z + 5) • 8z3+ 10z2+ 12z2 + 15z - 16z- 20 8z3 + 22z2 - 1z - 20 b. 2z2 + 3z - 4 c. 2z2 + 3z - 4 4z + 5 4z 8z3 +12z2 -16z +10z2 + 15z - 20 +5 10z2 +15z - 20 8z3 +12z2 - 16z + 0 8z3 + 22z2 - 1z - 20
Ex 8. (2a + 5)(2a - 5) • 4a2- 10a+ 10a - 25 4a2 - 25 b. 2a + 5 c. 2a +5 2a - 5 2a 4a2 +10a -10a - 25 -5 -10a -25 4a2 +10a + 0 4a2 - 25 4a2 - 25
Ex 9. (3m + 4n)2 • (3m + 4n)(3m + 4n) 9m2+ 12mn+ 12mn + 16n2 9m2 + 24mn + 16n2 b. 3m + 4n c. 3m +4n 3m + 4n 3m 9m2 +12mn +12mn + 16n2 +4n +12mn +16n2 9m2 + 12mn + 0 9m2 + 24mn + 16n2 9m2 + 24mn + 16n2