500 likes | 2.07k Views
Atomic orbital & Hydrogen-atom wave function. 原子軌道と水素原子波動関数. Derivation of hydrogen-atom wave function. @ Schrödinger eq. of H atom (水素原子のシュレディンガー方程式). ψ n,l,m (r, θ ,φ). ±. real. 1. n = 1, 2, 3,. Y l,m ( θ ,φ) ,. Derivation of hydrogen-atom wave function. R n,l (r). =. x.
E N D
Atomic orbital&Hydrogen-atom wave function • 原子軌道と水素原子波動関数
Derivation of hydrogen-atom wave function @ Schrödinger eq. of H atom(水素原子のシュレディンガー方程式)
ψn,l,m(r,θ,φ) ± real 1 n = 1, 2, 3, . . . Yl,m (θ,φ) , Derivation of hydrogen-atom wave function Rn,l (r) = x Yl,m (θ,φ) ψn,l,m(r,θ,φ) E = - — l = 0, 1, 2, . . . , n-1 where 2n2 m = 0, ±1, ±2, . . . , ±l @ Schrödinger eq. of H atom(水素原子のシュレディンガー方程式) convert to the atomic unit(原子単位へ変換する) convert from the xyz to the rθφ(polar) coordinate(xyz座標から極座標へ変換する) separate the variables of ( r, θ, φ) (変数分離する) @ Solution(解) Energy (エネルギー) Hydrogen-atom wave function (水素原子波動関数) Spherical Harmonics (球面調和関数) Radial wave function (動径波動関数) eliminate a imaginary by linear combination(足し算引き算して虚数を消去する) @ realized Hydrogen-atom wave function(実数化した水素原子波動関数) n = 1, 2, 3, . . . Rn,l (r) = x l = 0, 1, 2, . . . , n-1 where m = 0, 1, 2, . . . , l Realized Spherical Harmonics (実数化した球面調和関数)
± real Yl,m (θ,φ) ψn,l,m(r,θ,φ) Load to the Atomic Orbitals n = 1, 2, 3, . . . Rn,l (r) x = l = 0, 1, 2, . . . , n-1 where m = 0, 1, 2, . . . , l θ R1,0 l=0 n=1 π φ 2π Y0,0 r l=1 n=2 R2,0 R2,1 Y-1,1 Y1,0 Y+1,1 l=2 n=3 R3,0 R3,1 R3,2 Y-2,2 Y-2,1 Y2,0 Y+2,1 Y+2,2
± real Yl,m (θ,φ) 3D representation ψn,l,m(r,θ,φ) Load to the Atomic Orbitals n = 1, 2, 3, . . . Rn,l (r) = x l = 0, 1, 2, . . . , n-1 where m = 0, 1, 2, . . . , l θ R1,0 n=1 π φ 2π Y0,0 r n=2 R2,0 R2,1 Y-1,1 Y1,0 Y+1,1 n=3 R3,0 R3,1 R3,2 Y-2,2 Y-2,1 Y2,0 Y+2,1 Y+2,2
conversion l=2 : This transformation is similar to that of the world map. (この変形は世界地図の変形に似ている) dz2 orbital d orbital z2 Y2,0 (r,x,y,z)
± real + Yl,m (θ,φ) ψn,l,m(r,θ,φ) - + - + + - + + - - - + + - + - + - - + - + + + - + - + + Load to the Atomic Orbitals n = 1, 2, 3, . . . Rn,l (r) = x l = 0, 1, 2, . . . , n-1 where m = 0, 1, 2, . . . , l R1,0 n=1 Y0,0 r n=2 R2,0 R2,1 Y-1,1 Y1,0 Y+1,1 n=3 R3,0 R3,1 R3,2 Y-2,2 Y-2,1 Y2,0 Y+2,1 Y+2,2
± ± real Yl,m (r,x,y,z) Yl,m (θ,φ) ψn,l,m(r,θ,φ) Load to the Atomic Orbitals Rn,l (r) = x R1,0 n=1 s r n=2 R2,0 R2,1 py pz px n=3 R3,0 R3,1 R3,2 dzx dx2-y2 dxy dyz dz2
± real Yl,m (r,x,y,z) ψn,l,m(r,x,y,z) s orbital Rn,l (r) = x R1,0 n=1 1s = x 2s R2,0 n=2 s n=3 3s R3,0
± real Yl,m (r,x,y,z) ψn,l,m(r,x,y,z) p orbital Rn,l (r) = x l=1 3pz 2pz n=2 pz R2,1 = x py n=3 3py 2py R3,1 px 2px 3px
± real Yl,m (r,x,y,z) ψn,l,m(r,x,y,z) d orbital Rn,l (r) = x 3dz2 l=2 dz2 3dyz dyz n=3 = x R3,2 3dzx dzx 3dxy dxy 3dx2-y2 dx2-y2
Atomic Orbitals and Energies of the Hydrogen Atom (水素原子の原子軌道とエネルギー)
1 E = - — 2n2 Atomic Orbitals and Energies of the Hydrogen Atom l=0 l=1 l=2 l=3 0 ( N shell ) n=4 n=3 m=±1 m=±2 m=±3 ( M shell ) m=0 m=±2 m=±1 m=0 n=2 ( L shell ) m=±1 m=0 ψn,l,m(r,θ,φ) n = 1, 2, 3, . . . principal quantum number (主量子数) orbital angular momentum quantum number l = 0, 1, 2, . . . , n-1 (軌道角運動量量子数) m = 0, ±1, ±2, . . . , ±l magnetic quantum number -0.5 (磁気量子数) n=1 m=0 ( K shell )
real 1 E = - — ψn,l,m(r,x,y,z) 2n2 Atomic Orbitals and Energies of the Hydrogen Atom 4dx2-y2 4fz(x2-y2) 4px 4py 4fz(5z2-3r2) 4dz2 4dzx 4dyz 4dxy 4s 4pz 4fxyz n=4 4fx(5z2-r2) 4fx(x2-3y2) n=3 3s 3pz 3px 3py 3dz2 3dzx 3dyz 3dxy 3dx2-y2 4fy(5z2-r2) 4fy(3x2-y2) n=2 2s 2pz 2px 2py ψn,l,m(r,θ,φ) 1s n=1
real 1 E = - — ψn,l,m(r,x,y,z) 2n2 Atomic Orbitals and Energies of the Hydrogen Atom 4dx2-y2 4fz(x2-y2) 4px 4py 4fz(5z2-3r2) 4dz2 4dzx 4dyz 4dxy 4s 4pz 4fxyz n=4 4fx(5z2-r2) 4fx(x2-3y2) n=3 4fy(5z2-r2) 4fy(3x2-y2) n=2 3dyz 3dxy 3dz2 3dzx 3dx2-y2 2py 2pz 2px 3py 3pz 3px n=1 1s 2s 3s
4s 4py 4pz 4px 4dxy 4dyz 4dz2 4dzx 4dx2-y2 4fy(3x2-y2) 4fxyz 4fx(5z2-r2) 4fz(5z2-3r2) 4fy(5z2-r2) 4fz(x2-y2) 4fx(x2-3y2)
2py 2pz 2px 3py 3pz 3px 4s 3s 4py 4pz 4px 2s 3dyz 3dx2-y2 3dzx 3dxy 3dz2 1s 4dxy 4dyz 4dz2 4dzx 4dx2-y2 4fy(3x2-y2) 4fxyz 4fx(5z2-r2) 4fz(5z2-3r2) 4fy(5z2-r2) 4fz(x2-y2) 4fx(x2-3y2)