1 / 17

Atomic orbital & Hydrogen-atom wave function

Atomic orbital & Hydrogen-atom wave function. 原子軌道と水素原子波動関数. Derivation of hydrogen-atom wave function. @ Schrödinger eq. of H atom (水素原子のシュレディンガー方程式). ψ n,l,m (r, θ ,φ). ±. real. 1. n = 1, 2, 3,. Y l,m ( θ ,φ) ,. Derivation of hydrogen-atom wave function. R n,l (r). =. x.

Download Presentation

Atomic orbital & Hydrogen-atom wave function

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Atomic orbital&Hydrogen-atom wave function • 原子軌道と水素原子波動関数

  2. Derivation of hydrogen-atom wave function @ Schrödinger eq. of H atom(水素原子のシュレディンガー方程式)

  3. ψn,l,m(r,θ,φ) ± real 1 n = 1, 2, 3, . . . Yl,m (θ,φ) , Derivation of hydrogen-atom wave function Rn,l (r) = x Yl,m (θ,φ) ψn,l,m(r,θ,φ) E = - — l = 0, 1, 2, . . . , n-1 where 2n2 m = 0, ±1, ±2, . . . , ±l @ Schrödinger eq. of H atom(水素原子のシュレディンガー方程式) convert to the atomic unit(原子単位へ変換する) convert from the xyz to the rθφ(polar) coordinate(xyz座標から極座標へ変換する) separate the variables of ( r, θ, φ) (変数分離する) @ Solution(解) Energy (エネルギー) Hydrogen-atom wave function (水素原子波動関数) Spherical Harmonics (球面調和関数) Radial wave function (動径波動関数) eliminate a imaginary by linear combination(足し算引き算して虚数を消去する) @ realized Hydrogen-atom wave function(実数化した水素原子波動関数) n = 1, 2, 3, . . . Rn,l (r) = x l = 0, 1, 2, . . . , n-1 where m = 0, 1, 2, . . . , l Realized Spherical Harmonics (実数化した球面調和関数)

  4. ± real Yl,m (θ,φ) ψn,l,m(r,θ,φ) Load to the Atomic Orbitals n = 1, 2, 3, . . . Rn,l (r) x = l = 0, 1, 2, . . . , n-1 where m = 0, 1, 2, . . . , l θ R1,0 l=0 n=1 π φ 2π Y0,0 r l=1 n=2 R2,0 R2,1 Y-1,1 Y1,0 Y+1,1 l=2 n=3 R3,0 R3,1 R3,2 Y-2,2 Y-2,1 Y2,0 Y+2,1 Y+2,2

  5. ± real Yl,m (θ,φ) 3D representation ψn,l,m(r,θ,φ) Load to the Atomic Orbitals n = 1, 2, 3, . . . Rn,l (r) = x l = 0, 1, 2, . . . , n-1 where m = 0, 1, 2, . . . , l θ R1,0 n=1 π φ 2π Y0,0 r n=2 R2,0 R2,1 Y-1,1 Y1,0 Y+1,1 n=3 R3,0 R3,1 R3,2 Y-2,2 Y-2,1 Y2,0 Y+2,1 Y+2,2

  6. conversion l=2 : This transformation is similar to that of the world map. (この変形は世界地図の変形に似ている) dz2 orbital d orbital z2 Y2,0 (r,x,y,z)

  7. ± real + Yl,m (θ,φ) ψn,l,m(r,θ,φ) - + - + + - + + - - - + + - + - + - - + - + + + - + - + + Load to the Atomic Orbitals n = 1, 2, 3, . . . Rn,l (r) = x l = 0, 1, 2, . . . , n-1 where m = 0, 1, 2, . . . , l R1,0 n=1 Y0,0 r n=2 R2,0 R2,1 Y-1,1 Y1,0 Y+1,1 n=3 R3,0 R3,1 R3,2 Y-2,2 Y-2,1 Y2,0 Y+2,1 Y+2,2

  8. ± ± real Yl,m (r,x,y,z) Yl,m (θ,φ) ψn,l,m(r,θ,φ) Load to the Atomic Orbitals Rn,l (r) = x R1,0 n=1 s r n=2 R2,0 R2,1 py pz px n=3 R3,0 R3,1 R3,2 dzx dx2-y2 dxy dyz dz2

  9. ± real Yl,m (r,x,y,z) ψn,l,m(r,x,y,z) s orbital Rn,l (r) = x R1,0 n=1 1s = x 2s R2,0 n=2 s n=3 3s R3,0

  10. ± real Yl,m (r,x,y,z) ψn,l,m(r,x,y,z) p orbital Rn,l (r) = x l=1 3pz 2pz n=2 pz R2,1 = x py n=3 3py 2py R3,1 px 2px 3px

  11. ± real Yl,m (r,x,y,z) ψn,l,m(r,x,y,z) d orbital Rn,l (r) = x 3dz2 l=2 dz2 3dyz dyz n=3 = x R3,2 3dzx dzx 3dxy dxy 3dx2-y2 dx2-y2

  12. Atomic Orbitals and Energies of the Hydrogen Atom (水素原子の原子軌道とエネルギー)

  13. 1 E = - — 2n2 Atomic Orbitals and Energies of the Hydrogen Atom l=0 l=1 l=2 l=3 0 ( N shell ) n=4 n=3 m=±1 m=±2 m=±3 ( M shell ) m=0 m=±2 m=±1 m=0 n=2 ( L shell ) m=±1 m=0 ψn,l,m(r,θ,φ) n = 1, 2, 3, . . . principal quantum number (主量子数) orbital angular momentum quantum number l = 0, 1, 2, . . . , n-1 (軌道角運動量量子数) m = 0, ±1, ±2, . . . , ±l magnetic quantum number -0.5 (磁気量子数) n=1 m=0 ( K shell )

  14. real 1 E = - — ψn,l,m(r,x,y,z) 2n2 Atomic Orbitals and Energies of the Hydrogen Atom 4dx2-y2 4fz(x2-y2) 4px 4py 4fz(5z2-3r2) 4dz2 4dzx 4dyz 4dxy 4s 4pz 4fxyz n=4 4fx(5z2-r2) 4fx(x2-3y2) n=3 3s 3pz 3px 3py 3dz2 3dzx 3dyz 3dxy 3dx2-y2 4fy(5z2-r2) 4fy(3x2-y2) n=2 2s 2pz 2px 2py ψn,l,m(r,θ,φ) 1s n=1

  15. real 1 E = - — ψn,l,m(r,x,y,z) 2n2 Atomic Orbitals and Energies of the Hydrogen Atom 4dx2-y2 4fz(x2-y2) 4px 4py 4fz(5z2-3r2) 4dz2 4dzx 4dyz 4dxy 4s 4pz 4fxyz n=4 4fx(5z2-r2) 4fx(x2-3y2) n=3 4fy(5z2-r2) 4fy(3x2-y2) n=2 3dyz 3dxy 3dz2 3dzx 3dx2-y2 2py 2pz 2px 3py 3pz 3px n=1 1s 2s 3s

  16. 4s 4py 4pz 4px 4dxy 4dyz 4dz2 4dzx 4dx2-y2 4fy(3x2-y2) 4fxyz 4fx(5z2-r2) 4fz(5z2-3r2) 4fy(5z2-r2) 4fz(x2-y2) 4fx(x2-3y2)

  17. 2py 2pz 2px 3py 3pz 3px 4s 3s 4py 4pz 4px 2s 3dyz 3dx2-y2 3dzx 3dxy 3dz2 1s 4dxy 4dyz 4dz2 4dzx 4dx2-y2 4fy(3x2-y2) 4fxyz 4fx(5z2-r2) 4fz(5z2-3r2) 4fy(5z2-r2) 4fz(x2-y2) 4fx(x2-3y2)

More Related