130 likes | 233 Views
IMAGE ANALYSIS. CHAPTER 7. Template Filters. A. Dermanis. Moving templates for image filtering. g ij = f i – 1, j –1 h –1,–1 + f i –1, j h –1,0 + f i –1, j +1 h –1,1 + + f i , j –1 h 0,–1 + f i , j h 0,0 + f i , j +1 h 0,1 +
E N D
IMAGE ANALYSIS CHAPTER 7 Template Filters A. Dermanis
Moving templates for image filtering gij = fi–1,j–1h–1,–1 + fi–1,jh–1,0 + fi–1,j+1h–1,1 + + fi,j–1h0,–1 + fi,jh0,0 + fi,j+1h0,1 + + fi+1,j–1h1,–1 + fi+1,jh1,0 + fi+1,j+1h1,1 The discrete convolution process in template filtering A. Dermanis
Typical template dimensions Non-square templates viewed as special cases of square ones A. Dermanis
linear gij = hk–i,m–jfkm k m hi,j;k,m = hk–i,m–j position-invariant gij = hi,j;k,mfkm k m i+p j+p gij = hi,j;k,mfkm localized k=i–p m=j–p Template filters = Localized position-invariant lineartransformations of an image Using a (p+1)(p+1) template A. Dermanis
k = k–i m = m– j i+p j+p p p p p gij = hk–i,m–jfkm gij = hk,mfi+k,j+m g00 = hk,mfk,m k=–p m=–p k=i–p m=j–p k=–p m=–p Template filters = Localized position-invariant lineartransformations of an image Combination of all properties renamed (i=0, j=0, k=k, m=m) A. Dermanis
i–1 i i+1 j–1 j j+1 p p g00 = hk,mfk,m k=–p m=–p Template filters = Localized position-invariant lineartransformations of an image renamed hij fij g00 = h–1,–1f–1,–1 + h –1,0f–1,+1 + h –1,1f–1,+1 + + h0,–1f0,–1 + h0,0f0,0 + h0,+1f0,+1 + + h+1,–1f+1,–1 + h+1,0f+1,0 + h+1,+1f+1,+1 A. Dermanis
fkm = C fkm = C 1 1 25 9 homogeneous (low frequency) areas preserve their value homogeneous areas are set to zero high values emphasize high frequencies p p p p p p p p g00 = hk,mC = 0 g00 = hk,mC = C hk,m= 0 hk,m= 1 Examples Examples k=–p m=–p k=–p m=–p k=–p m=–p k=–p m=–p Low-pass filters High-pass filters A. Dermanis
An example of low pass filters: The original band 3 of a TM image is undergoing low pass filtering by moving mean templates with dimensions 33 and 55 Original Moving mean 33 Moving mean 55 A. Dermanis
An example of a high pass filter: The original image is undergoing high pass filtering with a 33 template, which enhances edges, best viewed as black lines in its negative Original high pass filtering 33 high pass filtering 33 (negative) A. Dermanis
hkmfkm k,m Templatesexpressing linear operators Local interpolation and templateformulation fkm f(x, y) interpolation A evaluation g(x, y) gij g(0,0) A. Dermanis
22 A = = + x2y2 The Laplacian operator Examples of Laplacian filters with varying template sizes Original (TM band 4) Laplacian 99 Laplacian 1313 Laplacian 1717 A. Dermanis
Examples of Laplacian filters with varying template sizes Original (TM band 4) Laplacian 55 Original + Laplacian 55 A. Dermanis
X2+Y2 X2+Y2 The Roberts and Sobel filters for edge detection Sobel filter Roberts filter X Y X Y Roberts Original (TM band 4) Sobel A. Dermanis