1 / 58

CSCE 212 Chapter 2: Instruction Set Architecture

CSCE 212 Chapter 2: Instruction Set Architecture. Instructor: Jason D. Bakos. Lecture Outline. Instruction Set Architectures MIPS ISA MIPS Instructions, Encoding, Addressing Modes MIPS Assembly Examples SPIM Procedure Calling Conventions I/O. Instruction Set Architecture.

adamdaniel
Download Presentation

CSCE 212 Chapter 2: Instruction Set Architecture

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CSCE 212Chapter 2: Instruction Set Architecture Instructor: Jason D. Bakos

  2. Lecture Outline • Instruction Set Architectures • MIPS ISA • MIPS Instructions, Encoding, Addressing Modes • MIPS Assembly Examples • SPIM • Procedure Calling Conventions • I/O

  3. Instruction Set Architecture

  4. Instruction Set Architecture • Instruction Set Architecture: • abtraction that hides the low-level details of a processor from the user • the interface between the hardware and software • everything you need to know to “use” the processor: • instruction set • instruction representations • addressing modes • etc… • “Families” of processors are defined by their ISA: • Sun Sparc • Intel IA-32 • MIPS • IBM 360 • Motorola/IBM PowerPC

  5. ISAs Today

  6. Processor Classes

  7. MIPS ISA • 100 million MIPS processors manufactured in 2002 • MIPS processors used in: • Products from ATI, Broadcom, NEC, Texas Instruments, Toshiba • SGI workstations • Series2 TiVo • Windows CE devices • Cisco/Linksys routers • Nintendo 64 • Sony Playstation 1, PS2 (Emotion), PSP • Cable boxes • Competes against XScale/ARM for cell phones • John L. Hennessy (Stanford, 1981) • 1984: MIPS Computer Systems • R2000 (1985), R3000 (1988), R4000 (64-bit, 1991) • SGI acquisition (1992) => MIPS Technologies • Transition to licensed IP: MIPS32 and MIPS64 (1999) • “Heavyweight” embedded processor

  8. Lecture Outline • Instruction Set Architectures • MIPS ISA • MIPS Instructions, Encoding, Addressing Modes • MIPS Assembly Examples • SPIM • Procedure Calling Conventions • I/O

  9. MIPS Microarchitecture

  10. RISC vs. CISC • Design “philosophies” for ISAs: RISC vs. CISC • CISC = Complex Instruction Set Computer • RISC = Reduced Instruction Set Computer • Tradeoff: • Execution time = instructions per program * cycles per instruction * seconds per cycle • Problems with CISC: • Compilers • Off-chip memory references • Complex control, unbalanced instruction set made parallelizing difficult • MIPS is the first implementation of a RISC architecture

  11. RISC vs. CISC • MIPS R2000 ISA • Designed for use with high-level programming languages • Easy for compilers • Example: mapping IA32 instruction CRC32 (accumulate CRC32 value) • Balance amount of work per instruction (pipelining) • Load-store machine • Force user to minimize off-chip accesses • Fixed instruction width (32-bits), small set of uniform instruction encodings • Reduce implementation complexity

  12. Lecture Outline • Instruction Set Architectures • MIPS ISA • MIPS Instructions, Encoding, Addressing Modes • MIPS Assembly Examples • SPIM • Procedure Calling Conventions • I/O

  13. MIPS Instruction Types • MIPS instructions fall into 5 classes: • Arithmetic/logical/shift/comparison • Control instructions (branch and jump) • Load/store • Other (exception, register movement to/from GP registers, etc.) • Three instruction encoding formats: • R-type (6-bit opcode, 5-bit rs, 5-bit rt, 5-bit rd, 5-bit shamt, 6-bit function code) • I-type (6-bit opcode, 5-bit rs, 5-bit rt, 16-bit immediate) • J-type (6-bit opcode, 26-bit pseudo-direct address)

  14. Partial MIPS Instruction Set (see Appendix. A) • Arithmetic R-type: add, addu, sub, subu • Arithmetic I-type: addi, addiu • Logical R-type: and, or, nor, xor • Logical I-type: andi, ori, xori • Compare R-type: slt, sltu • Compare I-type: slti, sltiu • Shift R-type: sll, sllv, srl, srlv, sra, srav • Load/Store I-type: lui, lw, lh, lhu, lb, lbu, sw, sh, sb • Branch I-type: • beq, bne, bgez, bgezal, bgtz, blez, blezal, bltz • Jump J-type: j, jal • Jump R-type: jr, jalr • OS support: syscall • Multiply/divide: mult, multu, div, divu • result held in 2 special registers (hi,lo) • Floating-point instructions

  15. MIPS Registers • 32 x 32-bit general purpose integer registers • Some have special purposes • These are the only registers the programmer can directly use • $0 => constant 0 • $1 => $at (reserved for assembler) • $2,$3 => $v0,$v1 (expression evaluation and results of a function) • $4-$7 => $a0-$a3 (arguments 1-4) • $8-$15 => $t0-$t7 (temporary values) • Used when evaluating expressions that contain more than two operands (partial solutions) • Not preserved across function calls • $16-$23 => $s0->$s7 (for local variables, preserved across function calls) • $24, $25 => $t8, $t9 (more temps) • $26,$27 => $k0, $k1 (reserved for OS kernel) • $28 => $gp (pointer to global area) • $29 => $sp (stack pointer) • $30 => $fp (frame pointer) • $31 => $ra (return address, for branch-and-links) • Program counter (PC) contains address of next instruction to be executed

  16. Design Considerations • Most arithmetic instructions have 3 operands simplifies the hardware • Limits the number of datapaths on the processor • Limiting to 32 registers speeds up register access time • For memories, smaller is faster • Influences clock cycle time

  17. Arithmetic • Arithmetic (R-type) instructions add a,b,c a = b + c sub a,b,c a = b - c • C code: • f = (g + h) – (i + j) • to… add t0,g,h add t1,i,j sub f,t0,t1 • t0, t1, f, g, h, i, j must be registers

  18. Registers • f, g, h, i, j in $s0, $s1, $s2, $s3, $s4 • To… add $t0,$s1,$s2 add $t1,$s3,$s4 sub $s0,$t0,$t1 • Similar instructions: • addu, subu • and, or, nor, xor • slt, sltu

  19. Encoding R-type Instructions • ADD $2, $3, $4 • R-type A/L/S/C instruction • Opcode is 0’s, rd=2, rs=3, rt=4, func=100000 • 000000 00011 00100 00010 00000 100000 • 0000 0000 0110 0100 0001 0000 0010 0000 • 0000 0000 0110 0100 0001 0000 0010 0000 • 00641020

  20. Immediate Instructions • Second operand is a 16-bit immediate • Signed (-32,768 to 32,767) or unsigned (0 to 65,535) • Encoded with I-type • addi $s0, $t0, -4 • Similar I-type instructions: • addiu • andi, ori, xori • lui

  21. Encoding I-Type Arithmetic/Logical/Compare • ADDI $2, $3, 12 • I-type A/L/S/C instruction • Opcode is 001000, rs=3, rt=2, imm=12 • 001000 00011 00010 0000000000001100

  22. Load Upper Immediate • Need more than 16 bits? • Example: • Initialize register $t0 with 1234567816 • lui $t0, 1234 • addi $t1, $0, 5678 • or $t0, $t0, $t1

  23. Shift Instructions • Shift left-logical: • 001010012 by 210 => 101001002 • Multiply 4110 by 2210 = 16410 • Shift right-logical: • 001010012 by 210 => 000010102 • Divide 4110 by 2210 (round down) = 1010 • Shift right-arithmetic • 111101012 by 210 => 111111012 • Divide -1110 by 2210 (round down) = -310 • Amount (0-31) is encoded in SHAMT field for SLL, SRL, SRA • Held in a register (rs field) for SLLV, SRLV, SRAV

  24. Load and Store • Memory units: • word (32 bits, 4 bytes) • halfword (16 bits, 2 bytes) • byte (8 bits) • Assume f, g, h, i, j are stored as words and contiguously • la $t2, f • lw $s1,4($t2) • lw $s2,8($t2) • lw $s3,12($t2) • lw $s4,16($t2) • … • sw $s0,0($t2) • Similar instructions: • lh, lhu, lb, lbu • sh, sb

  25. Encoding I-Type Load/Store • SW $2, 128($3) • I-type memory address instruction • Opcode is 101011, rs=00011, rt=00010, imm=0000000010000000 • 101011 00011 00010 0000000010000000

  26. Branch Instructions • Branch and jump instructions are required for program control • if-statements • loops • procedure calls • Unconditional branch • b <label> • Conditional branch • beq, bgez, bgezal, bgtz, blez • “and-link” variants write address of next instruction into $31 (only if branch is taken) • Branch targets are 16-bit immediate offset (offset in words)

  27. Encoding I-Type Branch • BEQ $3, $4, 4 • I-type conditional branch instruction • Opcode is 000100, rs=00011, rt=00100, imm=4 (skips next 4 instructions) • 000100 00011 00100 0000000000000100 • Note: • bltz, bltzal, bgez, bgezal all have opcode 1, func in rt field

  28. Jump Instructions • Unconditional branch • Two types: R-type and J-type • JR $31 • JALR $3 • R-type jump instruction • Opcode is 0’s, rs=3, rt=0, rd=31 (by default), func=001001 • 000000 00011 00000 11111 00000 001001 • J 128 • J-type pseudodirect jump instruction • Opcode is 000010, 26-bit pseudodirect address is 128/4 = 32 • 000010 00000000000000000000100000

  29. MIPS Addressing Modes • MIPS addresses register operands using 5-bit field • Example: ADD $2, $3, $4 • MIPS addresses branch targets as signed instruction offset • relative to next instruction (“PC relative”) • in units of instructions (words) • held in 16-bit offset in I-type • Example: BEQ $2, $3, 12 • Immediate addressing • Operand is help as constant (literal) in instruction word • Example: ADDI $2, $3, 64

  30. MIPS Addressing Modes (con’t) • MIPS addresses jump targets as register content or 26-bit “pseudo-direct” address • Example: JR $31, J 128 • MIPS addresses load/store locations • base register + 16-bit signed offset (byte addressed) • Example: LW $2, 128($3) • 16-bit direct address (base register is 0) • Example: LW $2, 4092($0) • indirect (offset is 0) • Example: LW $2, 0($4)

  31. Integer Multiply and Divide • mult $2, $3 • result in hi (32 bits) and lo (32 bits) • mul $2, $3, $4 is psuedo (low 32 bits) • madd $2, $3 – multiply and accumulate in hi and lo • div $2, $3 • quotient in lo and reminder in hi • div $2, $3, $4 is psuedo (quotient)

  32. Pseudoinstructions • Some MIPS instructions don’t have direct hardware implementations • Ex: abs $2, $3 • Resolved to: • bgez $3, pos • sub $2, $0, $3 • j out • pos: add $2, $0, $3 • out: … • Ex: rol $2, $3, $4 • Resolved to: • addi $1, $0, 32 • sub $1, $1, $4 • srlv $1, $3, $1 • sllv $2, $3, $4 • or $2, $2, $1

  33. Lecture Outline • Instruction Set Architectures • MIPS ISA • MIPS Instructions, Encoding, Addressing Modes • MIPS Assembly Examples • SPIM • Procedure Calling Conventions • I/O

  34. Complex Arithmetic Example z=(a*b)+(c/d)-(e+f*g); lw $s0,a lw $s1,b mult $s0,$s1 mflo $t0 lw $s0,c lw $s1,d div $s0,$s1 mflo $t1 add $t0,$t0,$t1 lw $s0,e lw $s1,f lw $s2,g mult $s1,$s2 mflo $t1 add $t1,$s0,$t1 sub $t0,$t0,$t1 sw $t0,z

  35. If-Statement if ((a>b)&&(c==d)) e=0; else e=f; lw $s0,a lw $s1,b bgt $s0,$s1,next0 b nope next0: lw $s0,c lw $s1,d beq $s0,$s1,yup nope: lw $s0,f sw $s0,e b out yup: xor $s0,$s0,$s0 sw $s0,e out: …

  36. For Loop for (i=0;i<a;i++) b[i]=i; lw $s0,a li $s1,0 loop0: blt $s1,$s0,loop1 b out loop1: sll $s2,S1,2 sw $s1,b($s2) addi $s1,$s1,1 b loop0 out: …

  37. Pre-Test While Loop while (a<b) { a++; } lw $s0,a lw $s1,b loop0: blt $s0,$s1,loop1 b out loop1: addi $s0,Ss0,1 sw $s0,a b loop0 out: …

  38. Post-Test While Loop • do { a++; • } while (a<b); lw $s0,a lw $s1,b loop0: addi $s0,$s0,1 sw $s0,a blt $s0,$s1,loop0 …

  39. Complex Loop for (i=0;i<n;i++) a[i]=b[i]+10; li $2,$0 # zero out index register (i) lw $3,n # load iteration limit sll $3,$3,2 # multiply by 4 (words) la $4,a # get address of a (assume < 216) la $5,b # get address of b (assume < 216) j test loop: add $6,$5,$2 # compute address of b[i] lw $7,0($6) # load b[i] addi $7,$7,10 # compute b[i]=b[i]+10 add $6,$4,$2 # compute address of a[i] sw $7,0($6) # store into a[i] addi $2,$2,4 # increment i test: blt $2,$3,loop # loop if test succeeds

  40. Lecture Outline • Instruction Set Architectures • MIPS ISA • MIPS Instructions, Encoding, Addressing Modes • MIPS Assembly Examples • SPIM • Procedure Calling Conventions • I/O

  41. SPIM

  42. SPIM • ASM file must be edited with text editor • Must have main label • Must jr $31 at end • Use .data and .text to specify sections • Load source file into SPIM • Run, step, or use breakpoints • Appendix A is good reference • In-class example: ASCII to binary conversion

  43. Example Code .data mystr: .asciiz "2887" .text main: addi $s0,$0,0 # initialize $s0 (current value) addi $s1,$0,0 # initialize $s1 (string index) addi $s3,$0,10 # initialize $s3 (value 10) loop: lb $s2,mystr($s1) # load a character from string beqz $s2,done # exit if it's the NULL character mul $s0,$s0,$s3 # multiply current value by 10 addi $s2,$s2,-48 # subtract 48 from character (convert to binary) add $s0,$s0,$s2 # add converted value to current value addi $s1,$s1,1 # add one to index b loop # loop done: jr $31 # return to OS

  44. Lecture Outline • Instruction Set Architectures • MIPS ISA • MIPS Instructions, Encoding, Addressing Modes • MIPS Assembly Examples • SPIM • Procedure Calling Conventions • I/O

  45. Procedures • JAL, JALR, and BGEZAL are designed to call subroutines • Return address is linked into $31 ($ra) • Need to: • save the return address on a stack to save the return address • save the state of the callee’s registers on a stack • have a place for arguments • have a place for return value(s)

  46. Memory Allocation

  47. The Stack • Stack is designed to hold variable-sized records • Stack grows down • Normally the old $fp must be stored in the AR to pop • Don’t need $fp for fixed-sized AR’s

  48. A Simple Procedure Calling Convention • Caller: • Place arguments in $a0 - $a3 (limit to 4) • Jump-and-link or branch-and-link to subroutine • Callee: • Pushes an activation record onto the stack (decrement $sp) • Save the return address ($ra) on the AR • Save registers $s0 - $s7 on the AR • Perform computation • Save return values to $v0 and $v1 • Restore $s0 - $s7 • Restore $ra • JR $ra • Caller: • Reads $v0 and $v1 and continues

  49. Notes • This convention: • Limited to 4 arguments and 2 return values (bad!) • Doesn’t save $t0 - $t9, $v0 - $v1, and $a0 - $a3 (bad!) • Doesn’t allow (variable-size) space on the AR for argument list (saves regs) • Doesn’t allow (variable-size) space on the AR for callee’s local variables (bad!) • Doesn’t allow space on the AR for return value (saves regs) • Fixed AR size (good!) • Doesn’t require the caller to prepare and/or teardown the AR (good!)

  50. Stack Example

More Related